MetroSets: Visualizing Sets as Metro Maps


Abstract in English

We propose MetroSets, a new, flexible online tool for visualizing set systems using the metro map metaphor. We model a given set system as a hypergraph $mathcal{H} = (V, mathcal{S})$, consisting of a set $V$ of vertices and a set $mathcal{S}$, which contains subsets of $V$ called hyperedges. Our system then computes a metro map representation of $mathcal{H}$, where each hyperedge $E$ in $mathcal{S}$ corresponds to a metro line and each vertex corresponds to a metro station. Vertices that appear in two or more hyperedges are drawn as interchanges in the metro map, connecting the different sets. MetroSets is based on a modular 4-step pipeline which constructs and optimizes a path-based hypergraph support, which is then drawn and schematized using metro map layout algorithms. We propose and implement multiple algorithms for each step of the MetroSet pipeline and provide a functional prototype with easy-to-use preset configurations. Furthermore, using several real-world datasets, we perform an extensive quantitative evaluation of the impact of different pipeline stages on desirable properties of the generated maps, such as octolinearity, monotonicity, and edge uniformity.

Download