Do you want to publish a course? Click here

A year long superoutburst from an ultracompact white dwarf binary reveals the importance of donor star irradiation

56   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

SDSS J080710+485259 is the longest period outbursting ultracompact white dwarf binary. Its first ever detected superoutburst started in November of 2018 and lasted for a year, the longest detected so far for any short orbital period accreting white dwarf. Here we show that the superoutburst duration of SDSS J080710+485259 exceeds the 2 months viscous time of its accretion disk by a factor of about 5. Consequently it follows neither the empirical relation nor the theoretical relation between the orbital period and the superoutburst duration for AM CVn systems. Six months after the end of the superoutburst the binary remained 0.4 mag brighter than its quiescent level before the superoutburst. We detect a variable X-ray behavior during the post-outburst cooling phase, demonstrating changes in the mass accretion rate. We discuss how irradiation of the donor star, a scenario poorly explored so far and which ultimately can have important consequences for AM CVns as gravitational wave sources, might explain the unusual observed features of the superoutburst.



rate research

Read More

Observations of the accretion powered millisecond pulsar SAX J1808.4-3658 have revealed an interesting binary evolution, with the orbit of the system expanding at an accelerated rate. We use the recent finding that the accreted fuel in SAX J1808.4-3658 is hydrogen depleted to greatly refine models of the progenitor and prior evolution of the binary system. We constrain the initial mass of the companion star to 1.0-1.2 M$_{mathrm{odot}}$, more massive than previous evolutionary studies of this system have assumed. We also infer the system must have undergone strongly non-conservative mass transfer in order to explain the observed orbital period changes. Following Jia & Li (2015), we include mass loss due to the pulsar radiation pressure on the donor star, inducing an evaporative wind which is ejected at the inner Lagrangian point of the binary system. The resulting additional loss of angular momentum resolves the discrepancy between conservative mass transfer models and the observed orbital period derivative of this system. We also include a treatment of donor irradiation due to the accretion luminosity, and find this has a non-negligible effect on the evolution of the system.
We present time-resolved optical and ultraviolet spectroscopy and photometry of V1460~Her, an eclipsing cataclysmic variable with a 4.99,h orbital period and an overluminous K5-type donor star. The optical spectra show emission lines from an accretion disc along with absorption lines from the donor. We use these to measure radial velocities, which, together with constraints upon the orbital inclination from photometry, imply masses of $M_1=0.869pm0.006,mathrm{M}_odot$ and $M_2=0.295pm0.004,mathrm{M}_odot$ for the white dwarf and the donor. The radius of the donor, $R_2=0.43pm0.002,mathrm{R}_odot$, is $approx 50$ per cent larger than expected given its mass, while its spectral type is much earlier than the M3.5 type that would be expected from a main sequence star with a similar mass. HST spectra show strong $mathrm{N{small V}}$ 1240 A emission but no $mathrm{C{small IV}}$ 1550 A emission, evidence for CNO-processed material. The donor is therefore a bloated, over-luminous remnant of a thermal-timescale stage of high mass transfer and has yet to re-establish thermal equilibrium. Remarkably, the HST ultraviolet data also show a strong 30 per cent peak-to-peak, $38.9,$s pulsation that we explain as being due to the spin of the white dwarf, potentially putting V1460 Her in a similar category to the propeller system AE Aqr in terms of its spin frequency and evolutionary path. AE Aqr also features a post-thermal timescale mass donor, and V1460 Her may therefore be its weak magnetic field analogue since the accretion disc is still present, with the white dwarf spin-up a result of a recent high accretion rate.
We report on the discovery of a dichotomy in the behavior of outbursts in ultracompact accreting white dwarf binaries (AM CVns), using multiwavelength observations of the new AM CVn system ASASSN-21au which has a period of ~58 min. The binary showed a first brightness increase with respect to its quiescent g level of ~0.8 mag which lasted for at least 82 days, followed by an additional 0.5 mag increase which lasted 2 weeks. Afterwards ASASSN-21au went into superoutburst for the first time. Such superoutburst lasted a total of 19 days, showing an amplitude with respect to quiescence of ~7.5 mags in g, with a precursor and an echo outburst. During the superoutburst of ASASSN-21au we also detected the first correlation between the X-rays, UV and optical emission in an AM CVn. The color evolution of ASASSN-21au indicates that during the superoutburst the dominant component was the accretion disk. The short duration, large amplitude and color evolution of the superoutburst agree with expectations from the disk instability model, but they contrast with the long duration (longer than a year), small amplitude and red color evolution of the outbursts of SDSS~J080710+485259 and SDSS J113732+405458, which have periods of ~53 min and ~60 min, respectively. The initial slow brightness increase in the light curve of ASASSN-21au and the behavior after the superoutburst favors a scenario in which changes in the mass-transfer rate led to disk instabilities, while the outburst mechanism of SDSS J080710+485259 and SDSS J113732+405458 has been attributed to enhanced mass-transfer alone. Further observations are needed to understand the origin of this dichotomy.
111 - Wei-Min Gu , Tuan Yi , 2020
We propose a compact binary model with an eccentric orbit to explain periodically active fast radio burst (FRB) sources, where the system consists of a neutron star (NS) with strong dipolar magnetic fields and a magnetic white dwarf (WD). In our model, the WD fills its Roche lobe at periastron, and mass transfer occurs from the WD to the NS around this point. The accreted material may be fragmented into a number of parts, which arrive at the NS at different times. The fragmented magnetized material may trigger magnetic reconnection near the NS surface. The electrons can be accelerated to an ultra-relativistic speed, and therefore the curvature radiation of the electrons can account for the burst activity. In this scenario, the duty cycle of burst activity is related to the orbital period of the binary. We show that such a model may work for duty cycles roughly from ten minutes to two days. For the recently reported 16.35-day periodicity of FRB 180916.J0158+65, our model does not naturally explain such a long duty cycle, since an extremely high eccentricity ($e>0.95$) is required.
Supersoft X-ray sources are stellar objects which emit X-rays with temperatures of about 1 million Kelvin and luminosities well in excess of what can be produced by stellar coronae. It has generally been presumed that the objects in this class are binary star systems in which mass transfer leads to nuclear fusion on the surface of a white dwarf. Classical novae, the runaway fusion events on the surfaces of white dwarfs, generally have supersoft phases, and it is often stated that the bright steady supersoft X-ray sources seen from white dwarfs accreting mass at a high rate are undergoing steady nuclear fusion. In this letter, we report the discovery of a transient supersoft source in the Small Magellanic Cloud without any signature of nuclear fusion having taken place. This discovery indicates that the X-ray emission probably comes from a spreading layer - a belt on the surface of the white dwarf near the inner edge of the accretion disk in which a large fraction of the total accretion energy is emitted - and (albeit more tentatively) that the accreting white dwarf is relatively massive. We thus establish that the presence of a supersoft source cannot always be used as a tracer of nuclear fusion, in contradiction with decades-old consensus about the nature of supersoft emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا