Chandra Monitoring of the J1809-1917 Pulsar Wind Nebula and Its Field


Abstract in English

PSR J1809-1917 is a young ($tau=51$ kyr) energetic ($dot{E}=1.8times10^{36}$ erg s$^{-1}$) radio pulsar powering an X-ray pulsar wind nebula (PWN) that exhibits morphological variability. We report on the results of a new monitoring campaign by the Chandra X-ray Observatory (CXO), carried out across 6 epochs with a $sim$7-week cadence. The compact nebula can be interpreted as a jet-dominated outflow along the pulsars spin axis. Its variability can be the result of Doppler boosting in the kinked jet whose shape changes with time (akin to the Vela pulsar jet). The deep X-ray image, composed of 405 ks of new and 131 ks of archival CXO data, reveals an arcminute-scale extended nebula (EN) whose axis of symmetry aligns with both the axis of the compact nebula and the direction toward the peak of the nearby TeV source HESS J1809-193. The ENs morphology and extent suggest that the pulsar is likely moving through the ambient medium at a transonic velocity. We also resolved a faint 7$$-long nonthermal collimated structure protruding from the PWN. It is possibly another instance of a misaligned outflow (also known as a kinetic jet) produced by high-energy particles escaping the PWNs confinement and tracing the interstellar magnetic field lines. Finally, taking advantage of the 536 ks exposure, we analyzed the point sources in the J1809 field and classified them using multiwavelength data. None of the classified sources in the field can reasonably be expected to produce the extended TeV flux in the region, suggesting that PSR J1809-1917 is indeed the counterpart to HESS/eHWC J1809-193.

Download