Do you want to publish a course? Click here

Coherent Jetting behind a gate-defined Channel in Bilayer Graphene

63   0   0.0 ( 0 )
 Added by Carolin Gold
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene has evolved as a platform for quantum transport that can compete with the best and cleanest semiconductor systems. Recently, many interesting local properties of carrier transport in graphene have been investigated by various scanning probe techniques. Here, we report on the observation of distinct electronic jets emanating from a narrow split-gate defined channel in bilayer graphene. We find that these jets, which are visible via their interference patterns, occur predominantly with an angle of 60{deg} between each other. This observation is related to the specific bandstructure of bilayer graphene, in particular trigonal warping, which leads to a valley-dependent selection of momenta for low-energy conduction channels. This experimental observation of electron jetting has consequences for carrier transport in graphene in general as well as for devices relying on ballistic and valley selective transport.



rate research

Read More

75 - Carolin Gold 2020
We use Scanning Gate Microscopy to demonstrate the presence of localized states arising from potential inhomogeneities in a 50nm-wide, gate-defined conducting channel in encapsulated bilayer graphene. When imaging the channel conductance under the influence of a local tip-induced potential, we observe ellipses of enhanced conductance as a function of the tip position. These ellipses allow us to infer the location of the localized states and to study their dependence on the displacement field. For large displacement fields, we observe that localized states tend to occur halfway into the channel. All our observations can be well explained within the framework of stochastic Coulomb blockade.
We report on charge detection in electrostatically-defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high quality quantum dots. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate. We show that Coulomb resonances in the sensing dot are sensitive to individual charging events on the nearby quantum dot. The potential change due to single electron charging causes a step-like change (up to 77 %) in the current through the charge detector. Furthermore, the charging states of a quantum dot with tunable tunneling barriers and of coupled quantum dots can be detected.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the superconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
The rich and electrostatically tunable phase diagram exhibited by moire materials has made them a suitable platform for hosting single material multi-purpose devices. To engineer such devices, understanding electronic transport and localization across electrostatically defined interfaces is of fundamental importance. Little is known, however, about how the interplay between the band structure originating from the moire lattice and electric potential gradients affects electronic confinement. Here, we electrostatically define a cavity across a twisted double bilayer graphene sample. We observe two kinds of Fabry-Perot oscillations. The first, independent of charge polarity, stems from confinement of electrons between dispersive-band/flat-band interfaces. The second arises from junctions between regions tuned into different flat bands. When tuning the out-of-plane electric field across the device, we observe Coulomb blockade resonances in transport, an indication of strong electronic confinement. From the gate, magnetic field and source-drain voltage dependence of the resonances, we conclude that quantum dots form at the interfaces of the Fabry-Perot cavity. Our results constitute a first step towards better understanding interfacial phenomena in single crystal moire devices.
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a single dot and demonstrate that for small-sized scatterers the cross-sections are dominated by quantum effects, where resonant scattering leads to a series of quasi-bound dot states. Calculating the conductance and the local density of states for quantum dot superlattices we show that the resonant carrier transport through such graphene-based nanostructures can be easily tuned by varying the gate voltage.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا