Do you want to publish a course? Click here

From Supernova to Remnant: Tracking the Evolution of the Oldest Known X-ray Supernovae

109   0   0.0 ( 0 )
 Added by Vikram Dwarkadas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Core-collapse supernovae (SNe) expand into a medium created by winds from the pre-SN progenitor. The SN explosion and resulting shock wave(s) heat up the surrounding plasma, giving rise to thermal X-ray emission, which depends on the density of the emitting material. Tracking the variation of the X-ray luminosity over long periods of time thus allows for investigation of the kinematics of the SN shock waves, the structure of the surrounding medium, and the nature of the progenitor star. In this paper X-ray observations of five of the oldest known X-ray supernovae - SN 1970G, SN 1968D, SN 1959D, SN 1957D and SN 1941C - are analyzed, with the aim of reconstructing their light curves over several decades. For those supernovae for which we can extract multi-epoch data, the X-ray luminosity appears to decline with time, although with large error bars. No increase in the X-ray emission from SN 1970G is found at later epochs, contrary to previous reports. All five SNe show X-ray luminosities that are of comparable magnitude. We compare the late-time X-ray luminosities of these SNe to those of supernova remnants (SNRs) in the Galaxy which are a few hundred years old, and find that when the tentative decline is taken into account, the luminosity of the old SNe studied herein could fall below the luminosity of some of the younger SNRs within a few hundred years. However, the X-ray luminosity should begin to increase as the SNe expand in the Sedov phase, thus reaching that of the observed SNRs.



rate research

Read More

We present the results of a spectral analysis of the central region of the mixed-morphology supernova remnant HB 9. A prior Ginga observation of this source detected a hard X-ray component above 4 keV and the origin of this particular X-ray component is still unknown. Our results demonstrate that the extracted X-ray spectra are best represented by a model consisting of a collisional ionization equilibrium plasma with a temperature of ~0.1-0.2 keV (interstellar matter component) and an ionizing plasma with a temperature of ~0.6-0.7 keV and an ionization timescale of >1 x 10^{11} cm^{-3} s (ejecta component). No significant X-ray emission was found in the central region above 4 keV. The recombining plasma model reported by a previous work does not explain our spectra.
We report a discovery of diffuse X-ray emission around the supernova remnant (SNR) G106.3+2.7, which is associated with VER J2227+608 and HAWC J2227+610 and is known as a candidate for a PeV cosmic ray accelerator (PeVatron). We analyze observational data of Suzaku around the SNR and the adjacent pulsar PSR J2229+6114. We find diffuse X-ray emission that is represented by either thermal or non-thermal one. However, the metal abundance for the thermal emission is <0.13 Z_sun, which may be too small in the Milky Way and suggests that the emission is non-thermal. The intensity of the diffuse emission increases toward PSR J2229+6114 in the same way as radio emission, and it is in contrast with gamma-ray emission concentrated on a molecular cloud. The X-ray photon index does not change with the distance from the pulsar and it indicates that radiative cooling is ineffective and particle diffusion is not extremely slow. The X-ray and radio emissions seem to be of leptonic origin and the parent electrons may originate from the pulsar or its wind nebula. The gamma-ray emission appears to be of hadronic origin because of its spacial distribution. The parent protons may be tightly confined in the cloud separately from the diffusing electrons.
162 - Satoru Katsuda 2010
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tychos supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.20 yr^{-1} (expansion index m=0.33, where R = t^m) to 0.40 yr^{-1} (m=0.65) with azimuthal angle in 2000-2007 measurements, and 0.14 yr^{-1} (m=0.26) to 0.40 yr^{-1} (m=0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of ~0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.21-0.31 yr^{-1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of <~0.2 cm^{-3}.
103 - Aya Bamba 2016
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
NuSTAR observed G1.9+0.3, the youngest known supernova remnant in the Milky Way, for 350 ks and detected emission up to $sim$30 keV. The remnants X-ray morphology does not change significantly across the energy range from 3 to 20 keV. A combined fit between NuSTAR and CHANDRA shows that the spectrum steepens with energy. The spectral shape can be well fitted with synchrotron emission from a power-law electron energy distribution with an exponential cutoff with no additional features. It can also be described by a purely phenomenological model such as a broken power-law or a power-law with an exponential cutoff, though these descriptions lack physical motivation. Using a fixed radio flux at 1 GHz of 1.17 Jy for the synchrotron model, we get a column density of N$_{rm H}$ = $(7.23pm0.07) times 10^{22}$ cm$^{-2}$, a spectral index of $alpha=0.633pm0.003$, and a roll-off frequency of $ u_{rm rolloff}=(3.07pm0.18) times 10^{17}$ Hz. This can be explained by particle acceleration, to a maximum energy set by the finite remnant age, in a magnetic field of about 10 $mu$G, for which our roll-off implies a maximum energy of about 100 TeV for both electrons and ions. Much higher magnetic-field strengths would produce an electron spectrum that was cut off by radiative losses, giving a much higher roll-off frequency that is independent of magnetic-field strength. In this case, ions could be accelerated to much higher energies. A search for $^{44}$Ti emission in the 67.9 keV line results in an upper limit of $1.5 times 10^{-5}$ $,mathrm{ph},mathrm{cm}^{-2},mathrm{s}^{-1}$ assuming a line width of 4.0 keV (1 sigma).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا