No Arabic abstract
An interesting class of orthogonal representations consists of the so-called turn-regular ones, i.e., those that do not contain any pair of reflex corners that point to each other inside a face. For such a representation H it is possible to compute in linear time a minimum-area drawing, i.e., a drawing of minimum area over all possible assignments of vertex and bend coordinates of H. In contrast, finding a minimum-area drawing of H is NP-hard if H is non-turn-regular. This scenario naturally motivates the study of which graphs admit turn-regular orthogonal representations. In this paper we identify notable classes of biconnected planar graphs that always admit such representations, which can be computed in linear time. We also describe a linear-time testing algorithm for trees and provide a polynomial-time algorithm that tests whether a biconnected plane graph with small faces has a turn-regular orthogonal representation without bends.
In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a linear number of faces. This implies that orthogonal circle intersection graphs have only a linear number of edges. When we restrict ourselves to orthogonal unit circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact graphs of unit circles). We show that, similarly to penny graphs, it is NP-hard to recognize orthogonal unit circle intersection graphs.
We investigate a variety of problems of finding tours and cycle covers with minimum turn cost. Questions of this type have been studied in the past, with complexity and approximation results as well as open problems dating back to work by Arkin et al. in 2001. A wide spectrum of practical applications have renewed the interest in these questions, and spawned variants: for full coverage, every point has to be covered, for subset coverage, specific points have to be covered, and for penalty coverage, points may be left uncovered by incurring an individual penalty. We make a number of contributions. We first show that finding a minimum-turn (full) cycle cover is NP-hard even in 2-dimensional grid graphs, solving the long-standing open Problem 53 in The Open Problems Project edited by Demaine, Mitchell and ORourke. We also prove NP-hardness of finding a subset cycle cover of minimum turn cost in thin grid graphs, for which Arkin et al. gave a polynomial-time algorithm for full coverage; this shows that their boundary techniques cannot be applied to compute exact solutions for subset and penalty variants. On the positive side, we establish the first constant-factor approximation algorithms for all considered subset and penalty problem variants, making use of LP/IP techniques. For full coverage in more general grid graphs (e.g., hexagonal grids), our approximation factors are better than the combinatorial ones of Arkin et al. Our approach can also be extended to other geometric variants, such as scenarios with obstacles and linear combinations of turn and distance costs.
In this paper we investigate relations between Koopman, groupoid and quasi-regular representations of countable groups. We show that for an ergodic measure class preserving action of a countable group G on a standard Borel space the associated groupoid and quasi-regular representations are weakly equivalent and weakly contained in the Koopman representation. Moreover, if the action is hyperfinite then the Koopman representation is weakly equivalent to the groupoid. As a corollary of our results we obtain a continuum of pairwise disjoint pairwise equivalent irreducible representations of weakly branch groups. As an illustration we calculate spectra of regular, Koopman and groupoid representations associated to the action of the 2-group of intermediate growth constructed by the second author in 1980.
We introduce a new class $mathcal{G}$ of bipartite plane graphs and prove that each graph in $mathcal{G}$ admits a proper square contact representation. A contact between two squares is emph{proper} if they intersect in a line segment of positive length. The class $mathcal{G}$ is the family of quadrangulations obtained from the 4-cycle $C_4$ by successively inserting a single vertex or a 4-cycle of vertices into a face. For every graph $Gin mathcal{G}$, we construct a proper square contact representation. The key parameter of the recursive construction is the aspect ratio of the rectangle bounded by the four outer squares. We show that this aspect ratio may continuously vary in an interval $I_G$. The interval $I_G$ cannot be replaced by a fixed aspect ratio, however, as we show, the feasible interval $I_G$ may be an arbitrarily small neighborhood of any positive real.
Given an initial placement of a set of rectangles in the plane, we consider the problem of finding a disjoint placement of the rectangles that minimizes the area of the bounding box and preserves the orthogonal order i.e. maintains the sorted ordering of the rectangle centers along both $x$-axis and $y$-axis with respect to the initial placement. This problem is known as Layout Adjustment for Disjoint Rectangles(LADR). It was known that LADR is $mathbb{NP}$-hard, but only heuristics were known for it. We show that a certain decision version of LADR is $mathbb{APX}$-hard, and give a constant factor approximation for LADR.