Do you want to publish a course? Click here

SPIRou: nIR velocimetry & spectropolarimetry at the CFHT

111   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents an overview of SPIRou, the new-generation near-infrared spectropolarimeter / precision velocimeter recently installed on the 3.6-m Canada-France-Hawaii Telescope (CFHT). Starting from the two main science goals, namely the quest for planetary systems around nearby M dwarfs and the study of magnetized star / planet formation, we outline the instrument concept that was designed to efficiently address these forefront topics, and detail the in-lab and on-sky instrument performances measured throughout the intensive testing phase that SPIRou was submitted to before passing the final acceptance review in early 2019 and initiating science observations. With a central position among the newly started programmes, the SPIRou Legacy Survey (SLS) Large Programme was allocated 300 CFHT nights until at least mid 2022. We also briefly describe a few of the first results obtained in the various science topics that SPIRou started investigating, focusing in particular on planetary systems of nearby M dwarfs, transiting exoplanets and their atmospheres, magnetic fields of young stars, but also on alternate science goals like the atmospheres of M dwarfs and the Earths atmosphere. We finally conclude on the essential role that SPIRou and the CFHT can play in coordination with forthcoming major facilities like the JWST, the ELTs, PLATO and ARIEL over the decade.



rate research

Read More

SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as a new-generation instrument for CFHT. SPIRou aims in particular at becoming world-leader on two forefront science topics, (i) the quest for habitable Earth-like planets around very- low-mass stars, and (ii) the study of low-mass star and planet formation in the presence of magnetic fields. In addition to these two main goals, SPIRou will be able to tackle many key programs, from weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo processes in fully-convective bodies and planet habitability. The science programs that SPIRou proposes to tackle are forefront (identified as first priorities by most research agencies worldwide), ambitious (competitive and complementary with science programs carried out on much larger facilities, such as ALMA and JWST) and timely (ideally phased with complementary space missions like TESS and CHEOPS). SPIRou is designed to carry out its science mission with maximum efficiency and optimum precision. More specifically, SPIRou will be able to cover a very wide single-shot nIR spectral domain (0.98-2.35 mu m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars with a ~15% average throughput and a radial velocity (RV) precision of 1 m/s.
75 - JF Donati , D Kouach , M Lacombe 2018
SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter for the Canada-France-Hawaii Telescope (CFHT), that will focus on two forefront science topics, (i) the quest for habitable Earth-like planets around nearby M stars, and (ii) the study of low-mass star/planet formation in the presence of magnetic fields. SPIRou will also efficiently tackle many key programmes beyond these two main goals, from weather patterns on brown dwarfs to Solar-System planet and exoplanet atmospheres. SPIRou will cover a wide spectral domain in a single exposure (0.98-2.44um at a resolving power of 70K, yielding unpolarized and polarized spectra of low-mass stars with a 15% average throughput at a radial velocity (RV) precision of 1 m/s. It consists of a Cassegrain unit mounted at the Cassegrain focus of CFHT and featuring an achromatic polarimeter, coupled to a cryogenic spectrograph cooled down at 80K through a fluoride fiber link. SPIRou is currently integrated at IRAP/OMP and will be mounted at CFHT in 2017 Q4 for a first light scheduled in late 2017. Science operation is predicted to begin in 2018 S2, allowing many fruitful synergies with major ground and space instruments such as the JWST, TESS, ALMA and later-on PLATO and the ELT.
450 - C. Moutou , I. Boisse , G. Hebrard 2015
SPIRou is a near-infrared spectropolarimeter and high-precision radial-velocity instrument, to be mounted on the 3.6m Canada-France-Hawaii telescope ontop Maunakea and to be offered to the CFHT community from 2018. It focuses on two main scientific objectives : (i) the search and study of Earth-like planets around M dwarfs, especially in their habitable zone and (ii) the study of stellar and planetary formation in the presence of stellar magnetic field. The SPIRou characteristics (complete coverage of the near infrared wavelengths, high resolution, high stability and efficiency, polarimetry) also allow many other programs, e.g., magnetic fields and atmospheres of M dwarfs and brown dwarfs, star-planet interactions, formation and characterization of massive stars, dynamics and atmospheric chemistry of planets in the solar system.
For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.
SPIRou is the newest spectropolarimeter and high-precision velocimeter that has recently been installed at the Canada-France-Hawaii Telescope on Maunakea, Hawaii. It operates in the near-infrared and simultaneously covers the 0.98-2.35 {mu}m domain at high spectral resolution. SPIRou is optimized for exoplanet search and characterization with the radial-velocity technique, and for polarization measurements in stellar lines and subsequent magnetic field studies. The host of the transiting hot Jupiter HD 189733 b has been observed during early science runs. We present the first near-infrared spectropolarimetric observations of the planet-hosting star as well as the stellar radial velocities as measured by SPIRou throughout the planetary orbit and two transit sequences. The planetary orbit and Rossiter-McLaughlin anomaly are both investigated and modeled. The orbital parameters and obliquity are all compatible with the values found in the optical. The obtained radial-velocity precision is compatible with about twice the photon-noise estimates for a K2 star under these conditions. The additional scatter around the orbit, of about 8 m/s, agrees with previous results that showed that the activity-induced scatter is the dominant factor. We analyzed the polarimetric signal, Zeeman broadening, and chromospheric activity tracers such as the 1083nm HeI and the 1282nm Pab{eta} lines to investigate stellar activity. First estimates of the average unsigned magnetic flux from the Zeeman broadening of the FeI lines give a magnetic flux of 290+-58 G, and the large-scale longitudinal field shows typical values of a few Gauss. These observations illustrate the potential of SPIRou for exoplanet characterization and magnetic and stellar activity studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا