Do you want to publish a course? Click here

An In-Depth Analysis of the Slingshot Interconnect

136   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The interconnect is one of the most critical components in large scale computing systems, and its impact on the performance of applications is going to increase with the system size. In this paper, we will describe Slingshot, an interconnection network for large scale computing systems. Slingshot is based on high-radix switches, which allow building exascale and hyperscale datacenters networks with at most three switch-to-switch hops. Moreover, Slingshot provides efficient adaptive routing and congestion control algorithms, and highly tunable traffic classes. Slingshot uses an optimized Ethernet protocol, which allows it to be interoperable with standard Ethernet devices while providing high performance to HPC applications. We analyze the extent to which Slingshot provides these features, evaluating it on microbenchmarks and on several applications from the datacenter and AI worlds, as well as on HPC applications. We find that applications running on Slingshot are less affected by congestion compared to previous generation networks.



rate research

Read More

Distributed digital infrastructures for computation and analytics are now evolving towards an interconnected ecosystem allowing complex applications to be executed from IoT Edge devices to the HPC Cloud (aka the Computing Continuum, the Digital Continuum, or the Transcontinuum). Understanding end-to-end performance in such a complex continuum is challenging. This breaks down to reconciling many, typically contradicting application requirements and constraints with low-level infrastructure design choices. One important challenge is to accurately reproduce relevant behaviors of a given application workflow and representative settings of the physical infrastructure underlying this complex continuum. We introduce a rigorous methodology for such a process and validate it through E2Clab. It is the first platform to support the complete experimental cycle across the Computing Continuum: deployment, analysis, optimization. Preliminary results with real-life use cases show that E2Clab allows one to understand and improve performance, by correlating it to the parameter settings, the resource usage and the specifics of the underlying infrastructure.
158 - Ni An , Steven Weber 2015
Principal component analysis (PCA) is not only a fundamental dimension reduction method, but is also a widely used network anomaly detection technique. Traditionally, PCA is performed in a centralized manner, which has poor scalability for large distributed systems, on account of the large network bandwidth cost required to gather the distributed state at a fusion center. Consequently, several recent works have proposed various distributed PCA algorithms aiming to reduce the communication overhead incurred by PCA without losing its inferential power. This paper evaluates the tradeoff between communication cost and solution quality of two distributed PCA algorithms on a real domain name system (DNS) query dataset from a large network. We also apply the distributed PCA algorithm in the area of network anomaly detection and demonstrate that the detection accuracy of both distributed PCA-based methods has little degradation in quality, yet achieves significant savings in communication bandwidth.
217 - Mohammad Goudarzi , Qifan Deng , 2021
Edge/Fog computing is a novel computing paradigm that provides resource-limited Internet of Things (IoT) devices with scalable computing and storage resources. Compared to cloud computing, edge/fog servers have fewer resources, but they can be accessed with higher bandwidth and less communication latency. Thus, integrating edge/fog and cloud infrastructures can support the execution of diverse latency-sensitive and computation-intensive IoT applications. Although some frameworks attempt to provide such integration, there are still several challenges to be addressed, such as dynamic scheduling of different IoT applications, scalability mechanisms, multi-platform support, and supporting different interaction models. FogBus2, as a new python-based framework, offers a lightweight and distributed container-based framework to overcome these challenges. In this chapter, we highlight key features of the FogBus2 framework alongside describing its main components. Besides, we provide a step-by-step guideline to set up an integrated computing environment, containing multiple cloud service providers (Hybrid-cloud) and edge devices, which is a prerequisite for any IoT application scenario. To obtain this, a low-overhead communication network among all computing resources is initiated by the provided scripts and configuration files. Next, we provide instructions and corresponding code snippets to install and run the main framework and its integrated applications. Finally, we demonstrate how to implement and integrate several new IoT applications and custom scheduling and scalability policies with the FogBus2 framework.
As one of the most popular south-bound protocol of software-defined networking(SDN), OpenFlow decouples the network control from forwarding devices. It offers flexible and scalable functionality for networks. These advantages may cause performance issues since there are performance penalties in terms of packet processing speed. It is important to understand the performance of OpenFlow switches and controllers for its deployments. In this paper we model the packet processing time of OpenFlow switches and controllers. We mainly analyze how the probability of packet-in messages impacts the performance of switches and controllers. Our results show that there is a performance penalty in OpenFlow networks. However, the penalty is not much when probability of packet-in messages is low. This model can be used for a network designer to approximate the performance of her deployments.
System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less congested. However, while this may mitigate interference caused by congestion, it also generates more traffic since packets traverse additional hops, causing in turn congestion on other applications and on the application itself. In this paper, we first describe how to estimate network noise. By following these guidelines, we show how noise can be reduced by using routing algorithms which select minimal paths with a higher probability. We exploit this knowledge to design an algorithm which changes the probability of selecting minimal paths according to the application characteristics. We validate our solution on microbenchmarks and real-world applications on two systems relying on a Dragonfly interconnection network, showing noise reduction and performance improvement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا