Do you want to publish a course? Click here

The SuperFGD Prototype Charged Particle Beam Tests

139   0   0.0 ( 0 )
 Added by Etam Noah
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 4{pi} coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10x10x10 mm^3, providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920x560x1840 mm^3 volume. A prototype made of 24x8x48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.



rate research

Read More

109 - Oleksandr Borysov 2017
LumiCal is a sampling electromagnetic calorimeter designed for the precise measurement of integrated luminosity in electron positron linear collider experiments. The present report contains a description and results of the first beam test of a multilayer LumiCal prototype with four silicon detector planes. A 5 GeV electron beam from the CERN PS T9 facility was used to study the performance of the LumiCal prototype. Presented results are mainly focused on the transverse structure of the observed electromagnetic shower and the Moli`ere radius measurement. A comparison with MC simulation is also discussed.
83 - J. Lange , L. Adamczyk , G. Avoni 2016
The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14{deg}, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 {mu}m pitch of 5.5 +/- 0.5 {mu}m per pixel plane and of 2.8 +/- 0.5 {mu}m for the full four-plane tracker at 14{deg} were found, largely surpassing the AFP requirement of 10 {mu}m. The timing detector showed also good hit efficiencies above 99%, and a full-system time resolution of 35 +/- 6 ps was found for the ToF prototype detector with two Quartz bars in-line (half the final AFP size) without dedicated optimisation, fulfilling the requirements for initial low-luminosity AFP runs.
59 - K. Akiba , R. Aoude , J. Alozy 2015
While designed primarily for X-ray imaging applications, the Medipix3 ASIC can also be used for charged-particle tracking. In this work, results from a beam test at the CERN SPS with irradiated and non-irradiated sensors are presented and shown to be in agreement with simulation, demonstrating the suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.
The Beam Dump Facility (BDF) is a project for a new facility at CERN dedicated to high intensity beam dump and fixed target experiments. Currently in its design phase, the first aim of the facility is to search for Light Dark Matter and Hidden Sector models with the Search for Hidden Particles (SHiP) experiment. At the core of the facility sits a dense target/dump, whose function is to absorb safely the 400 GeV/c Super Proton Synchrotron (SPS) beam and to maximize the production of charm and beauty mesons. An average power of 300 kW will be deposited on the target, which will be subjected to unprecedented conditions in terms of temperature, structural loads and irradiation. In order to provide a representative validation of the target design, a prototype target has been designed, manufactured and tested under the SPS fixed-target proton beam during 2018, up to an average beam power of 50 kW, corresponding to 350 kJ per pulse. The present contribution details the target prototype design and experimental setup, as well as a first evaluation of the measurements performed during beam irradiation. The analysis of the collected data suggests that a representative reproduction of the operational conditions of the Beam Dump Facility target was achieved during the prototype tests, which will be complemented by a Post Irradiation Examination campaign during 2020.
The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا