Do you want to publish a course? Click here

Emergent ergodicity at the transition between many-body localized phases

110   0   0.0 ( 0 )
 Added by Rahul Sahay
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strongly disordered systems in the many-body localized (MBL) phase can exhibit ground state order in highly excited eigenstates. The interplay between localization, symmetry, and topology has led to the characterization of a broad landscape of MBL phases ranging from spin glasses and time crystals to symmetry protected topological phases. Understanding the nature of phase transitions between these different forms of eigenstate order remains an essential open question. Here, we conjecture that no direct transition between distinct MBL orders can occur; rather, a thermal phase always intervenes. Motivated by recent advances in Rydberg-atom-based quantum simulation, we propose an experimental protocol where the intervening thermal phase can be diagnosed via the dynamics of local observables.



rate research

Read More

The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many body localized phase, which is characterized by emergent local integrals of motion, and provides a generic example of non-ergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo, and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a non-interacting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence, these probes allow to get insights into the relation between physical operators and local integrals of motion, and access the operator spreading in the many-body localized phase.
We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. To this end we devise a heuristic way of constructing local integrals of motion of very high quality, which are added to the Hamiltonian in conjunction with Lagrange multipliers. The ground state simulation of the shifted Hamiltonian corresponds to a high-energy state of the original Hamiltonian in case of exactly known local integrals of motion. We can show that the inevitable mixing between eigenstates as a consequence of non-perfect integrals of motion is weak enough such that the characteristics of many-body localized systems are not averaged out in our approach, unlike the standard ensembles of statistical mechanics. Our method paves the way to study higher dimensions and indicates that a full many-body localized phase in 2d, where (nearly) all eigenstates are localized, is likely to exist.
We study the many body localization (MBL) transition for interacting fermions subject to quasiperiodic potentials by constructing the local integrals of motion (LIOMs) in the MBL phase as time-averaged local operators. We study numerically how these time-averaged operators evolve across the MBL transition. We find that the norm of such time-averaged operators drops discontinuously to zero across the transition; as we discuss, this implies that LIOMs abruptly become unstable at some critical localization length of order unity. We analyze the LIOMs using hydrodynamic projections and isolating the part of the operator that is associated with interactions. Equipped with this data we perform a finite-size scaling analysis of the quasiperiodic MBL transition. Our results suggest that the quasiperiodic MBL transition occurs at considerably stronger quasiperiodic modulations, and has a larger correlation-length critical exponent, than previous studies had found.
Thermalization of random-field Heisenberg spin chain is probed by time evolution of density correlation functions. Studying the impacts of average energies of initial product states on dynamics of the system, we provide arguments in favor of the existence of a mobility edge in the large system-size limit.
Many-body localized (MBL) systems do not approach thermal equilibrium under their intrinsic dynamics; MBL and conventional thermalizing systems form distinct dynamical phases of matter, separated by a phase transition at which equilibrium statistical mechanics breaks down. True MBL is known to occur only under certain stringent conditions for perfectly isolated one-dimensional systems, with Hamiltonians that have strictly short-range interactions and lack any continuous non-Abelian symmetries. However, in practice, even systems that are not strictly MBL can be nearly MBL, with equilibration rates that are far slower than their other intrinsic timescales; thus, anomalously slow relaxation occurs in a much broader class of systems than strict MBL. In this review we address transport and dynamics in such nearly-MBL systems from a unified perspective. Our discussion covers various classes of such systems: (i) disordered and quasiperiodic systems on the thermal side of the MBL-thermal transition; (ii) systems that are strongly disordered, but obstructed from localizing because of symmetry, interaction range, or dimensionality; (iii) multiple-component systems, in which some components would in isolation be MBL but others are not; and finally (iv) driven systems whose dynamics lead to exponentially slow rates of heating to infinite temperature. A theme common to many of these problems is that they can be understood in terms of approximately localized degrees of freedom coupled to a heat bath (or baths) consisting of thermal degrees of freedom; however, this putative bath is itself nontrivial, being either small or very slowly relaxing. We discuss anomalous transport, diverging relaxation times, and other signatures of the proximity to MBL in these systems. We also survey recent theoretical and numerical methods that have been applied to study dynamics on either side of the MBL transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا