No Arabic abstract
The transmission problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. After four decades of research motivated by scattering theory, the spectral properties of this problem are now known to depend on a type of contrast between coefficients near the boundary. Previously, we established the discreteness of eigenvalues for a large class of anisotropic coefficients which is related to the celebrated complementing conditions due to Agmon, Douglis, and Nirenberg. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenfunctions for this class of coefficients under an additional mild assumption on the continuity of the coefficients. The analysis is new and based on the $L^p$ regularity theory for the transmission problem established here. It also involves a subtle application of the spectral theory for the Hilbert Schmidt operators. Our work extends largely known results in the literature which are mainly devoted to the isotropic case with $C^infty$-coefficients.
We consider the interior transmission eigenvalue (ITE) problem, which arises when scattering by inhomogeneous media is studied. The ITE problem is not self-adjoint. We show that positive ITEs are observable together with plus or minus signs that are defined by the direction of motion of the corresponding eigenvalues of the scattering matrix (when the latter approach {bf$z=1$)}. We obtain a Weyl type formula for the counting function of positive ITEs, which are taken together with ascribed signs.
In this paper, we consider the transmission eigenvalue problem associated with a general conductive transmission condition and study the geometric structures of the transmission eigenfunctions. We prove that under a mild regularity condition in terms of the Herglotz approximations of one of the pair of the transmission eigenfunctions, the eigenfunctions must be vanishing around a corner on the boundary. The Herglotz approximation can be regarded as the Fourier transform of the transmission eigenfunction in terms of the plane waves, and the growth rate of the transformed function can be used to characterize the regularity of the underlying wave function. The geometric structures derived in this paper include the related results in [5,19] as special cases and verify that the vanishing around corners is a generic local geometric property of the transmission eigenfunctions.
We investigate multiplicity and symmetry properties of higher eigenvalues and eigenfunctions of the $p$-Laplacian under homogeneous Dirichlet boundary conditions on certain symmetric domains $Omega subset mathbb{R}^N$. By means of topological arguments, we show how symmetries of $Omega$ help to construct subsets of $W_0^{1,p}(Omega)$ with suitably high Krasnoselskiu{i} genus. In particular, if $Omega$ is a ball $B subset mathbb{R}^N$, we obtain the following chain of inequalities: $$ lambda_2(p;B) leq dots leq lambda_{N+1}(p;B) leq lambda_ominus(p;B). $$ Here $lambda_i(p;B)$ are variational eigenvalues of the $p$-Laplacian on $B$, and $lambda_ominus(p;B)$ is the eigenvalue which has an associated eigenfunction whose nodal set is an equatorial section of $B$. If $lambda_2(p;B)=lambda_ominus(p;B)$, as it holds true for $p=2$, the result implies that the multiplicity of the second eigenvalue is at least $N$. In the case $N=2$, we can deduce that any third eigenfunction of the $p$-Laplacian on a disc is nonradial. The case of other symmetric domains and the limit cases $p=1$, $p=infty$ are also considered.
We study the transmission eigenvalues for the multipoint scatterers of the Bethe-Peierls-Fermi-Zeldovich-Beresin-Faddeev type in dimensions $d=2$ and $d=3$. We show that for these scatterers: 1) each positive energy $E$ is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex $E$ is an interior transmission eigenvalue of infinite multiplicity. The case of dimension $d=1$ is also discussed.
We study the wave equation in the exterior of a bounded domain $K$ with dissipative boundary condition $partial_{ u} u - gamma(x) u = 0$ on the boundary $Gamma$ and $gamma(x) > 0.$ The solutions are described by a contraction semigroup $V(t) = e^{tG}, : t geq 0.$ The eigenvalues $lambda_k$ of $G$ with ${rm Re}: lambda_k < 0$ yield asymptotically disappearing solutions $u(t, x) = e^{lambda_k t} f(x)$ having exponentially decreasing global energy. We establish a Weyl formula for these eigenvalues in the case $min_{xin Gamma} gamma(x) > 1.$ For strictly convex obstacles $K$ this formula concerns all eigenvalues of $G.$