Do you want to publish a course? Click here

First apsidal motion and light curve analysis of 162 eccentric eclipsing binaries from LMC

123   0   0.0 ( 0 )
 Added by Petr Zasche
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an extensive study of 162 early-type binary systems located in the LMC galaxy that show apsidal motion and have never been studied before. For the ample systems, we performed light curve and apsidal motion modelling for the first time. These systems have a median orbital period of 2.2 days and typical periods of the apsidal motion were derived to be of the order of decades. We identified two record-breaking systems. The first, OGLE LMC-ECL-22613, shows the shortest known apsidal motion period among systems with main sequence components (6.6 years); it contains a third component with an orbital period of 23 years. The second, OGLE LMC-ECL-17226, is an eccentric system with the shortest known orbital period (0.9879 days) and with quite fast apsidal motion period (11 years). Among the studied systems, 36 new triple-star candidates were identified based on the additional period variations. This represents more than 20% of all studied systems, which is in agreement with the statistics of multiples in our Galaxy. However, the fraction should only be considered as a lower limit of these early-type stars in the LMC because of our method of detection, data coverage, and limited precision of individual times of eclipses.



rate research

Read More

106 - P. Zasche , M. Wolf , J. Vrastil 2014
Aims: The Danish 1.54-meter telescope at the La Silla observatory was used for photometric monitoring of selected eccentric eclipsing binaries located in the Small Magellanic Cloud. The new times of minima were derived for these systems, which are needed for accurate determination of the apsidal motion. Moreover, many new times of minima were derived from the photometric databases OGLE and MACHO. Eighteen early-type eccentric-orbit eclipsing binaries were studied. Methods: Their (O-C) diagrams of minima timings were analysed and the parameters of the apsidal motion were obtained. The light curves of these eighteen binaries were analysed using the program PHOEBE, giving the light curve parameters. For several systems the additional third light also was detected. Results: We derived for the first time and significantly improved the relatively short periods of apsidal motion from 19 to 142 years for these systems. The relativistic effects are weak, up to 10% of the total apsidal motion rate. For one system (OGLE-SMC-ECL-0888), the third-body hypothesis was also presented, which agrees with high value of the third light for this system detected during the light curve solution.
67 - D. Baroch , A. Gimenez , I. Ribas 2021
The change in the argument of periastron of eclipsing binaries, i.e., the apsidal motion caused by classical and relativistic effects, can be measured from variations in the difference between the time of minimum light of the primary and secondary eclipses. Poor apsidal motion rate determinations and large uncertainties in the classical term have hampered previous attempts to determine the general relativistic term with sufficient precision to test General Relativity predictions. As a product of the TESS mission, thousands of high-precision light curves from eclipsing binaries are now available. Using a selection of suitable well-studied eccentric eclipsing binary systems, we aim to determine their apsidal motion rates and place constraints on key gravitational parameters. We compute the time of minimum light from the TESS light curves of 15 eclipsing binaries with precise absolute parameters and with an expected general relativistic contribution to the total apsidal motion rate greater than 60%. We use the changing primary and secondary eclipse timing differences over time to compute the apsidal motion rate, when possible, or the difference between the linear periods as computed from primary and secondary eclipses. For a greater time baseline we carefully combine the high-precision TESS timings with archival reliable timings. We determine the apsidal motion rate of 9 eclipsing binaries, 5 of which are reported for the first time. From these, we are able to measure the general relativistic apsidal motion rate of 6 systems with sufficient precision to test General Relativity for the first time using this method. This test explores a regime of gravitational forces and potentials that had not been probed earlier. We find perfect agreement with the theoretical predictions, and we are able to set stringent constraints on two parameters of the parametrised post-Newtonian formalism.
We have determined the apsidal motion rate of 27 double-lined eclipsing binaries with precise physical parameters. The obtained values, corrected for their relativistic contribution, yield precise empirical parameters of the internal stellar density concentration. The comparison of these results with the predictions based on new theoretical models shows very good agreement. Small deviations are identified but remain within the observational uncertainties and the path for a refined comparison is indicated.
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modeling and analysis of our observations revealed that: (i) Eight targets have overcontact configurations with considerable fillout factor (up to 0.5) while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62+224448.5 exhibit total eclipses and their parameters could be assumed as well-determined; (v) NSVS 2729229 shows emission in the H_{alpha} line. Masses, radii and luminosities of the stellar components were estimated by the empirical relation period, orbital axis for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.
We present a detailed V-band photometric light curve modeling of 30 eclipsing binaries using the data from Pietrukowicz et al. (2009) collected with the European Southern Observatory Very Large Telescope (ESO VLT) of diameter 8-m. The light curve of these 30 eclipsing binaries were selected out of 148 of them available in the database on the basis of complete phase coverage, regular and smooth phased light curve shapes. Eclipsing binaries play pivotal role in the direct measurement of astronomical distances more accurately simply from their geometry of light curves. The accurate value of Hubble constant (H0) which measures the rate of expansion of the Universe heavily relies on extragalactic distance scale measurements. Classification of the selected binary stars in the sample were done, preliminarily on the basis of Fourier parameters in the a2-a4 plane and final classification was obtained from the Roche lobe geometry. Out of these 30 eclipsing binaries, only one was found to be detached binary system while the rest 29 of them belong to the contact binary systems. These contact binaries were further classified into the A-type and W-type based on their mass ratios. Since spectroscopic mass ratio measurements were not available for any of these binary stars, we determined the mass ratios through photometric light curve modeling with the aid of Wilson-Devinney code as implemented in PHOEBE. Various geometrical parameters and physical parameters of astrophysical importance viz., mass, radius and luminosity were obtained from the light curves of the selected stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا