No Arabic abstract
Consensus Sequences of event logs are often used in process mining to quickly grasp the core sequence of events to be performed in a process, or to represent the backbone of the process for doing other analyses. However, it is still not clear how many traces are enough to properly represent the underlying process. In this paper, we propose a novel sampling strategy to determine the number of traces necessary to produce a representative consensus sequence. We show how to estimate the difference between the predefined Expert Model and the real processes carried out. This difference level can be used as reference for domain experts to adjust the Expert Model. In addition, we apply this strategy to several real-world workflow activity datasets as a case study. We show a sample curve fitting task to help readers better understand our proposed methodology.
Causality is crucial to understanding the mechanisms behind complex systems and making decisions that lead to intended outcomes. Event sequence data is widely collected from many real-world processes, such as electronic health records, web clickstreams, and financial transactions, which transmit a great deal of information reflecting the causal relations among event types. Unfortunately, recovering causalities from observational event sequences is challenging, as the heterogeneous and high-dimensional event variables are often connected to rather complex underlying event excitation mechanisms that are hard to infer from limited observations. Many existing automated causal analysis techniques suffer from poor explainability and fail to include an adequate amount of human knowledge. In this paper, we introduce a visual analytics method for recovering causalities in event sequence data. We extend the Granger causality analysis algorithm on Hawkes processes to incorporate user feedback into causal model refinement. The visualization system includes an interactive causal analysis framework that supports bottom-up causal exploration, iterative causal verification and refinement, and causal comparison through a set of novel visualizations and interactions. We report two forms of evaluation: a quantitative evaluation of the model improvements resulting from the user-feedback mechanism, and a qualitative evaluation through case studies in different application domains to demonstrate the usefulness of the system.
In the last decade, scenario-based serious-games have become a main tool for learning new skills and capabilities. An important factor in the development of such systems is the overhead in time, cost and human resources to manually create the content for these scenarios. We focus on how to create content for scenarios in medical, military, commerce and gaming applications where maintaining the integrity and coherence of the content is integral for the systems success. To do so, we present an automatic method for generating content about everyday activities through combining computer science techniques with the crowd. We use the crowd in three basic ways: to capture a database of scenarios of everyday activities, to generate a database of likely replacements for specific events within that scenario, and to evaluate the resulting scenarios. We found that the generated scenarios were rated as reliable and consistent by the crowd when compared to the scenarios that were originally captured. We also compared the generated scenarios to those created by traditional planning techniques. We found that both methods were equally effective in generated reliable and consistent scenarios, yet the main advantages of our approach is that the content we generate is more varied and much easier to create. We have begun integrating this approach within a scenario-based training application for novice investigators within the law enforcement departments to improve their questioning skills.
Reinforcement learning (RL) agents in human-computer interactions applications require repeated user interactions before they can perform well. To address this cold start problem, we propose a novel approach of using cognitive models to pre-train RL agents before they are applied to real users. After briefly reviewing relevant cognitive models, we present our general methodological approach, followed by two case studies from our previous and ongoing projects. We hope this position paper stimulates conversations between RL, HCI, and cognitive science researchers in order to explore the full potential of the approach.
Silent Speech Decoding (SSD) based on Surface electromyography (sEMG) has become a prevalent task in recent years. Though revolutions have been proposed to decode sEMG to audio successfully, some problems still remain. In this paper, we propose an optimized sequence-to-sequence (Seq2Seq) approach to synthesize voice from subvocal sEMG. Both subvocal and vocal sEMG are collected and preprocessed to provide data information. Then, we extract durations from the alignment between subvocal and vocal signals to regulate the subvocal sEMG following audio length. Besides, we use phoneme classification and vocal sEMG reconstruction modules to improve the model performance. Finally, experiments on a Mandarin speaker dataset, which consists of 6.49 hours of data, demonstrate that the proposed model improves the mapping accuracy and voice quality of reconstructed voice.
In this work, we attempt to answer a critical question: whether there exists some input sequence that will cause a well-trained discrete-space neural network sequence-to-sequence (seq2seq) model to generate egregious outputs (aggressive, malicious, attacking, etc.). And if such inputs exist, how to find them efficiently. We adopt an empirical methodology, in which we first create lists of egregious output sequences, and then design a discrete optimization algorithm to find input sequences that will cause the model to generate them. Moreover, the optimization algorithm is enhanced for large vocabulary search and constrained to search for input sequences that are likely to be input by real-world users. In our experiments, we apply this approach to dialogue response generation models trained on three real-world dialogue data-sets: Ubuntu, Switchboard and OpenSubtitles, testing whether the model can generate malicious responses. We demonstrate that given the trigger inputs our algorithm finds, a significant number of malicious sentences are assigned large probability by the model, which reveals an undesirable consequence of standard seq2seq training.