Do you want to publish a course? Click here

Single bubble and drop techniques for characterizing foams and emulsions

260   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The physics of foams and emulsions has traditionally been studied using bulk foam/emulsion tests and single film platforms such as the Scheludko cell. Recently there has been a renewed interest in a third class of techniques that we term as single bubble/drop tests, which employ isolated whole bubbles and drops to probe the characteristics of foams and emulsions. Single bubble and drop techniques provide a convenient framework for investigating a number of important characteristics of foams and emulsions, including the rheology, stabilization mechanisms, and rupture dynamics. In this review we provide a comprehensive discussion of the various single bubble/drop platforms and the associated experimental measurement protocols including the construction of coalescence time distributions, visualization of the thin film profiles and characterization of the interfacial rheological properties. Subsequently, we summarize the recent developments in foam and emulsion science with a focus on the results obtained through single bubble/drop techniques. We conclude the review by presenting important venues for future research.



rate research

Read More

In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified. To go beyond a limitation of the experiments, namely the presence of wall friction which complicates the relation between shear stress and shear rate, we compare the experiments with simulations of emulsion droplets based on the lattice-Boltzmann method, which are performed both with, and without, wall friction. Our results indicate a correlation between the localisation length of the velocity profiles and the localisation length of the number of plastic events. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correlation with the underlying local shear strain. These features, not previously reported for a confined foam, lend further support to the idea that cooperativity mechanisms, originally invoked for concentrated emulsions (Goyon et al. 2008), have parallels in the behaviour of other soft-glassy materials.
For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops which are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and pool, controls the crater deformations and pinch-off. However, it is not the strongest vortex rings which are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices which can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts, are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.
Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry and photonics. Here we study, theoretically and experimentally, the response of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the frequency of the vibration. However, as the amplitude increases, the half-frequency subharmonic Faraday waves are excited parametrically on the drop surface. We develop a simple hydrodynamic model of a one-dimensional liquid drop to analytically determine the amplitudes of the harmonic and the first superharmonic components of the linear response of the drop. In the nonlinear regime, our numerical analysis reveals an intriguing cascade of instabilities leading to the onset of subharmonic Faraday waves, their modulation instability and chaotic regimes with broadband power spectra. We show that the nonlinear response is highly sensitive to the ratio of the drop size and Faraday wavelength. The primary bifurcation of the harmonic waves is shown to be dominated by a period-doubling bifurcation, when the drop height is comparable with the width of the viscous boundary layer. Experimental results conducted using low-viscosity ethanol and high-viscocity canola oil drops vibrated at 70 Hz are in qualitative agreement with the predictions of our modelling.
115 - A.J. Webster , M.E. Cates 2001
In the absence of coalescence, coarsening of emulsions (and foams) is controlled by molecular diffusion of dispersed phase between droplets/bubbles. Studies of dilute emulsions have shown how the osmotic pressure of a trapped species within droplets can ``osmotically stabilise the emulsion. Webster and Cates (Langmuir, 1998, 14, 2068-2079) gave rigorous criteria for osmotic stabilisation of mono- and polydisperse emulsions, in the dilute regime. We consider here whether analogous criteria exist for the osmotic stabilisation of mono- and polydisperse concentrated emulsions and foams, and suggest that the pressure differences driving coarsening are small compared to the mean Laplace pressure. An exact calculation confirms this for a monodisperse 2D model, finding a bubbles pressure as P_i = P + Pi + P_i^G, with P, Pi the atmospheric and osmotic pressures, and P_i^G a ``geometric pressure that reduces to the Laplace pressure only for a spherical bubble. For Princens 2D emulsion model, P_i^G is only 5% larger in the dry limit than the dilute limit. We conclude that osmotic stabilisation of dense systems typically requires a pressure of trapped molecules in each droplet that is comparable to the Laplace pressures the same droplets would have if spherical, as opposed to the much larger Laplace pressures present in the system. We study coarsening of foams and concentrated emulsions when there is insufficient of the trapped species present. Rate-limiting mechanisms are considered, their applicability and associated droplet growth rates discussed. In a concentrated foam or emulsion, a finite yield threshold for droplet rearrangement may be enough to prevent coarsening of the remainder.
When a liquid drop impacts on a heated substrate, it can remain deposited, or violently boil in contact, or lift off with or without ever touching the surface. The latter is known as the Leidenfrost effect. The duration and area of the liquid--substrate contact is highly relevant for the heat transfer, as well as other effects such as corrosion. However, most experimental studies rely on side view imaging to determine contact times, and those are often mixed with the time until the drop lifts off from the substrate. Here, we develop and validate a reliable method of contact time determination using high-speed X-ray and Total Internal Reflection measurements. We exemplarily compare contact and lift-off times on flat silicon and sapphire substrates. We show that drops can rebound even without formation of a complete vapor layer, with a wide range of lift-off times. On sapphire, we find a local minimum of lift-off times much shorter than by capillary rebound in the comparatively low-temperature regime of transition boiling / thermal atomization. We elucidate the underlying mechanism related to spontaneous rupture of the lamella and receding of the contact area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا