Do you want to publish a course? Click here

Dataset Bias in Few-shot Image Recognition

241   0   0.0 ( 0 )
 Added by Chenlong Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The goal of few-shot image recognition (FSIR) is to identify novel categories with a small number of annotated samples by exploiting transferable knowledge from training data (base categories). Most current studies assume that the transferable knowledge can be well used to identify novel categories. However, such transferable capability may be impacted by the dataset bias, and this problem has rarely been investigated before. Besides, most of few-shot learning methods are biased to different datasets, which is also an important issue that needs to be investigated deeply. In this paper, we first investigate the impact of transferable capabilities learned from base categories. Specifically, we use the relevance to measure relationships between base categories and novel categories. Distributions of base categories are depicted via the instance density and category diversity. The FSIR model learns better transferable knowledge from relevant training data. In the relevant data, dense instances or diverse categories can further enrich the learned knowledge. Experimental results on different sub-datasets of ImagNet demonstrate category relevance, instance density and category diversity can depict transferable bias from base categories. Second, we investigate performance differences on different datasets from dataset structures and different few-shot learning methods. Specifically, we introduce image complexity, intra-concept visual consistency, and inter-concept visual similarity to quantify characteristics of dataset structures. We use these quantitative characteristics and four few-shot learning methods to analyze performance differences on five different datasets. Based on the experimental analysis, some insightful observations are obtained from the perspective of both dataset structures and few-shot learning methods. We hope these observations are useful to guide future FSIR research.



rate research

Read More

In this paper, we extend the traditional few-shot learning (FSL) problem to the situation when the source-domain data is not accessible but only high-level information in the form of class prototypes is available. This limited information setup for the FSL problem deserves much attention due to its implication of privacy-preserving inaccessibility to the source-domain data but it has rarely been addressed before. Because of limited training data, we propose a non-parametric approach to this FSL problem by assuming that all the class prototypes are structurally arranged on a manifold. Accordingly, we estimate the novel-class prototype locations by projecting the few-shot samples onto the average of the subspaces on which the surrounding classes lie. During classification, we again exploit the structural arrangement of the categories by inducing a Markov chain on the graph constructed with the class prototypes. This manifold distance obtained using the Markov chain is expected to produce better results compared to a traditional nearest-neighbor-based Euclidean distance. To evaluate our proposed framework, we have tested it on two image datasets - the large-scale ImageNet and the small-scale but fine-grained CUB-200. We have also studied parameter sensitivity to better understand our framework.
Few-shot learning is devoted to training a model on few samples. Recently, the method based on local descriptor metric-learning has achieved great performance. Most of these approaches learn a model based on a pixel-level metric. However, such works can only measure the relations between them on a single level, which is not comprehensive and effective. We argue that if query images can simultaneously be well classified via three distinct level similarity metrics, the query images within a class can be more tightly distributed in a smaller feature space, generating more discriminative feature maps. Motivated by this, we propose a novel Multi-level Metric Learning (MML) method for few-shot learning, which not only calculates the pixel-level similarity but also considers the similarity of part-level features and the similarity of distributions. First, we use a feature extractor to get the feature maps of images. Second, a multi-level metric module is proposed to calculate the part-level, pixel-level, and distribution-level similarities simultaneously. Specifically, the distribution-level similarity metric calculates the distribution distance (i.e., Wasserstein distance, Kullback-Leibler divergence) between query images and the support set, the pixel-level, and the part-level metric calculates the pixel-level and part-level similarities respectively. Finally, the fusion layer fuses three kinds of relation scores to obtain the final similarity score. Extensive experiments on popular benchmarks demonstrate that the MML method significantly outperforms the current state-of-the-art methods.
The quality and generality of deep image features is crucially determined by the data they have been trained on, but little is known about this often overlooked effect. In this paper, we systematically study the effect of variations in the training data by evaluating deep features trained on different image sets in a few-shot classification setting. The experimental protocol we define allows to explore key practical questions. What is the influence of the similarity between base and test classes? Given a fixed annotation budget, what is the optimal trade-off between the number of images per class and the number of classes? Given a fixed dataset, can features be improved by splitting or combining different classes? Should simple or diverse classes be annotated? In a wide range of experiments, we provide clear answers to these questions on the miniImageNet, ImageNet and CUB-200 benchmarks. We also show how the base dataset design can improve performance in few-shot classification more drastically than replacing a simple baseline by an advanced state of the art algorithm.
Recently, considerable literature has grown up around the theme of few-shot named entity recognition (NER), but little published benchmark data specifically focused on the practical and challenging task. Current approaches collect existing supervised NER datasets and re-organize them to the few-shot setting for empirical study. These strategies conventionally aim to recognize coarse-grained entity types with few examples, while in practice, most unseen entity types are fine-grained. In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Few-NERD consists of 188,238 sentences from Wikipedia, 4,601,160 words are included and each is annotated as context or a part of a two-level entity type. To the best of our knowledge, this is the first few-shot NER dataset and the largest human-crafted NER dataset. We construct benchmark tasks with different emphases to comprehensively assess the generalization capability of models. Extensive empirical results and analysis show that Few-NERD is challenging and the problem requires further research. We make Few-NERD public at https://ningding97.github.io/fewnerd/.
Object recognition has made great advances in the last decade, but predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset and benchmark, grounded in the real-world application of teachable object recognizers for people who are blind/low-vision. The dataset contains 3,822 videos of 486 objects recorded by people who are blind/low-vision on their mobile phones. The benchmark reflects a realistic, highly challenging recognition problem, providing a rich playground to drive research in robustness to few-shot, high-variation conditions. We set the benchmarks first state-of-the-art and show there is massive scope for further innovation, holding the potential to impact a broad range of real-world vision applications including tools for the blind/low-vision community. We release the dataset at https://doi.org/10.25383/city.14294597 and benchmark code at https://github.com/microsoft/ORBIT-Dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا