Strong decays of $bar{D}^{*}K^{*}$ molecules and the newly observed $X_{0,1}$ states


Abstract in English

Lately, the LHCb Collaboration reported the discovery of two new states in the $B^+rightarrow D^+D^- K^+$ decay, i.e., $X_0(2866)$ and $X_1(2904)$. In the present work, we study whether these states can be understood as $D^*bar{K}^*$ molecules from the perspective of their two-body strong decays into $D^-K^+$ via triangle diagrams and three-body decays into $D^*bar{K}pi$. The coupling of the two states to $D^*bar{K}^*$ are determined from the Weinberg compositeness condition, while the other relevant couplings are well known. The obtained strong decay width for the $X_0(2866)$, in marginal agreement with the experimental value within the uncertainty of the model, hints at a large $D^*bar{K}^*$ component in its wave function. On the other hand, the strong decay width for the $X_1(2904)$, much smaller than its experimental counterpart, effectively rules out its assignment as a $D^*bar{K}^*$ molecule.

Download