No Arabic abstract
We address the existence and stability of localized modes in the framework of the fractional nonlinear Schroedinger equation (FNSE) with the focusing cubic or focusing-defocusing cubic-quintic nonlinearity and a confining harmonic-oscillator (HO) potential. Approximate analytical solutions are obtained in the form of Hermite-Gauss modes. The linear stability analysis and direct simulations reveal that, under the action of the cubic self-focusing, the single-peak ground state and dipole mode are stabilized by the HO potential at values of the Levy index (the fractionality degree) alpha = 1 and alpha < 1, which lead, respectively, to the critical or supercritical collapse in free space. In addition to that, the inclusion of the quintic self-defocusing provides stabilization of higher-order modes, with the number of local peaks up to seven, at least.
The multi-peak solitons and their stability are investigated for the nonlocal nonlinear system with the sine-oscillation response, including both the cases of positive and negative Kerr coefficients. The Hermite-Gaussian-type multi-peak solitons and the ranges of the degree of nonlocality within which the solitons exist are analytically obtained by the variational approach. This is the first time, to our knowledge at least, to discuss the solution existence range of the multi-peak solitons analytically, although approximately. The variational analytical results are confirmed by the numerical ones. The stability of the multi-peak solitons are addressed by the linear stability analysis. It is found that the upper thresholds of the peak-number of the stable solitons are five and four for the system with negative and positive Kerr coefficients, respectively.
We report symmetry-breaking and restoring bifurcations of solitons in a fractional Schr{o}dinger equation with the cubic or cubic-quintic (CQ) nonlinearity and a parity-time (PT)-symmetric potential, which may be realized in optical cavities. Solitons are destabilized at the bifurcation point, and, in the case of the CQ nonlinearity, the stability is restored by an inverse bifurcation. Two mutually-conjugate branches of ghost states (GSs), with complex propagation constants, are created by the bifurcation, solely in the case of the fractional diffraction. While GSs are not true solutions, direct simulations confirm that their shapes and results of their stability analysis provide a blueprint for the evolution of genuine localized modes in the system.
We present the study of the dark soliton dynamics in an inhomogenous fiber by means of a variable coefficient modified nonlinear Schr{o}dinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/loss. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.
We construct families of fundamental, dipole, and tripole solitons in the fractional Schr{o}dinger equation (FSE) incorporating self-focusing cubic and defocusing quintic terms modulated by factors $cos ^{2}x$ and $sin^{2}x$, respectively. While the fundamental solitons are similar to those in the model with the uniform nonlinearity, the multipole complexes exist only in the presence of the nonlinear lattice. The shapes and stability of all the solitons strongly depend on the L{e}vy index (LI) that determines the FSE fractionality. Stability areas are identified in the plane of LI and propagation constant by means of numerical methods, and some results are explained with the help of an analytical approximation. The stability areas are broadest for the fundamental solitons and narrowest for the tripoles.
We explore the statistical behavior of the discrete nonlinear Schroedinger equation. We find a parameter region where the system evolves towards a state characterized by a finite density of breathers and a negative temperature. Such a state is metastable but the convergence to equilibrium occurs on astronomical time scales and becomes increasingly slower as a result of a coarsening processes. Stationary negative-temperature states can be experimentally generated via boundary dissipation or from free expansions of wave packets initially at positive temperature equilibrium.