The nature of ferromagnetism in the chiral helimagnet $Cr_{1/3}NbS_{2}$


Abstract in English

The chiral helimagnet, $Cr_{1/3}NbS_{2}$, hosts exotic spin textures, whose influence on the magneto-transport properties, make this material an ideal candidate for future spintronic applications. To date, the interplay between macroscopic magnetic and transport degrees of freedom is believed to result from a reduction in carrier scattering following spin order. Here, we present electronic structure measurements through the helimagnetic transition temperature, $T_{C}$ that challenges this view by showing a Fermi surface comprised of strongly hybridized Nb- and Cr- derived electronic states, and spectral weight in proximity to the Fermi level to anomalously increases as temperature is lowered below $T_{C}$. These findings are rationalized on the basis of first principle, density functional theory calculations, which reveal a large nearest-neighbor exchange energy, suggesting the interaction between local spin moments and hybridized Nb- and Cr- derived itinerant states to go beyond the perturbative interaction of Ruderman-Kittel-Kasuya-Yosida, suggesting instead a mechanism rooted in a Hunds exchange interaction.

Download