Do you want to publish a course? Click here

Incorporating Broad Phonetic Information for Speech Enhancement

79   0   0.0 ( 0 )
 Added by Yen-Ju Lu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In noisy conditions, knowing speech contents facilitates listeners to more effectively suppress background noise components and to retrieve pure speech signals. Previous studies have also confirmed the benefits of incorporating phonetic information in a speech enhancement (SE) system to achieve better denoising performance. To obtain the phonetic information, we usually prepare a phoneme-based acoustic model, which is trained using speech waveforms and phoneme labels. Despite performing well in normal noisy conditions, when operating in very noisy conditions, however, the recognized phonemes may be erroneous and thus misguide the SE process. To overcome the limitation, this study proposes to incorporate the broad phonetic class (BPC) information into the SE process. We have investigated three criteria to build the BPC, including two knowledge-based criteria: place and manner of articulatory and one data-driven criterion. Moreover, the recognition accuracies of BPCs are much higher than that of phonemes, thus providing more accurate phonetic information to guide the SE process under very noisy conditions. Experimental results demonstrate that the proposed SE with the BPC information framework can achieve notable performance improvements over the baseline system and an SE system using monophonic information in terms of both speech quality intelligibility on the TIMIT dataset.



rate research

Read More

Although deep learning algorithms are widely used for improving speech enhancement (SE) performance, the performance remains limited under highly challenging conditions, such as unseen noise or noise signals having low signal-to-noise ratios (SNRs). This study provides a pilot investigation on a novel multimodal audio-articulatory-movement SE (AAMSE) model to enhance SE performance under such challenging conditions. Articulatory movement features and acoustic signals were used as inputs to waveform-mapping-based and spectral-mapping-based SE systems with three fusion strategies. In addition, an ablation study was conducted to evaluate SE performance using a limited number of articulatory movement sensors. Experimental results confirm that, by combining the modalities, the AAMSE model notably improves the SE performance in terms of speech quality and intelligibility, as compared to conventional audio-only SE baselines.
This study proposes a trainable adaptive window switching (AWS) method and apply it to a deep-neural-network (DNN) for speech enhancement in the modified discrete cosine transform domain. Time-frequency (T-F) mask processing in the short-time Fourier transform (STFT)-domain is a typical speech enhancement method. To recover the target signal precisely, DNN-based short-time frequency transforms have recently been investigated and used instead of the STFT. However, since such a fixed-resolution short-time frequency transform method has a T-F resolution problem based on the uncertainty principle, not only the short-time frequency transform but also the length of the windowing function should be optimized. To overcome this problem, we incorporate AWS into the speech enhancement procedure, and the windowing function of each time-frame is manipulated using a DNN depending on the input signal. We confirmed that the proposed method achieved a higher signal-to-distortion ratio than conventional speech enhancement methods in fixed-resolution frequency domains.
Modern speech enhancement algorithms achieve remarkable noise suppression by means of large recurrent neural networks (RNNs). However, large RNNs limit practical deployment in hearing aid hardware (HW) form-factors, which are battery powered and run on resource-constrained microcontroller units (MCUs) with limited memory capacity and compute capability. In this work, we use model compression techniques to bridge this gap. We define the constraints imposed on the RNN by the HW and describe a method to satisfy them. Although model compression techniques are an active area of research, we are the first to demonstrate their efficacy for RNN speech enhancement, using pruning and integer quantization of weights/activations. We also demonstrate state update skipping, which reduces the computational load. Finally, we conduct a perceptual evaluation of the compressed models to verify audio quality on human raters. Results show a reduction in model size and operations of 11.9$times$ and 2.9$times$, respectively, over the baseline for compressed models, without a statistical difference in listening preference and only exhibiting a loss of 0.55dB SDR. Our model achieves a computational latency of 2.39ms, well within the 10ms target and 351$times$ better than previous work.
Recent research on speech enhancement (SE) has seen the emergence of deep-learning-based methods. It is still a challenging task to determine the effective ways to increase the generalizability of SE under diverse test conditions. In this study, we combine zero-shot learning and ensemble learning to propose a zero-shot model selection (ZMOS) approach to increase the generalization of SE performance. The proposed approach is realized in the offline and online phases. The offline phase clusters the entire set of training data into multiple subsets and trains a specialized SE model (termed component SE model) with each subset. The online phase selects the most suitable component SE model to perform the enhancement. Furthermore, two selection strategies were developed: selection based on the quality score (QS) and selection based on the quality embedding (QE). Both QS and QE were obtained using a Quality-Net, a non-intrusive quality assessment network. Experimental results confirmed that the proposed ZMOS approach can achieve better performance in both seen and unseen noise types compared to the baseline systems and other model selection systems, which indicates the effectiveness of the proposed approach in providing robust SE performance.
We explore the possibility of leveraging accelerometer data to perform speech enhancement in very noisy conditions. Although it is possible to only partially reconstruct users speech from the accelerometer, the latter provides a strong conditioning signal that is not influenced from noise sources in the environment. Based on this observation, we feed a multi-modal input to SEANet (Sound EnhAncement Network), a wave-to-wave fully convolutional model, which adopts a combination of feature losses and adversarial losses to reconstruct an enhanced version of users speech. We trained our model with data collected by sensors mounted on an earbud and synthetically corrupted by adding different kinds of noise sources to the audio signal. Our experimental results demonstrate that it is possible to achieve very high quality results, even in the case of interfering speech at the same level of loudness. A sample of the output produced by our model is available at https://google-research.github.io/seanet/multimodal/speech.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا