A pure connection formulation with real fields for Gravity


Abstract in English

We study an $SO(1,3)$ pure connection formulation in four dimensions for real-valued fields, inspired by the Capovilla, Dell and Jacobson complex self-dual approach. By considering the CMPR BF action, also, taking into account a more general class of the Cartan-Killing form for the Lie algebra $mathfrak{so(1,3)}$ and by refining the structure of the Lagrange multipliers, we integrate out the metric variables in order to obtain the pure connection action. Once we have obtained this action, we impose certain restrictions on the Lagrange multipliers, in such a way that the equations of motion led us to a family of torsionless conformally flat Einstein manifolds, parametrized by two numbers. Finally, we show that, by a suitable choice of parameters, that self-dual spaces (Anti-) De Sitter can be obtained.

Download