No Arabic abstract
We study the evolution of Milky Way thick and thin discs in the light of the most recent observational data. In particular, we analyze abundance gradients of O, N, Fe and Mg along the thin disc as well as the [Mg/Fe] vs. [Fe/H] relations and the metallicity distribution functions at different Galactocentric distances. We run several models starting from the two-infall paradigm, assuming that the thick and thin discs formed by means of two different infall episodes, and we explore several physical parameters, such as radial gas flows, variable efficiency of star formation, different times for the maximum infall onto the disc, different distributions of the total surface mass density of the thick disc and enriched gas infall. Our best model suggests that radial gas flows and variable efficiency of star formation should be acting together with the inside-out mechanism for the thin disc formation. The timescale for maximum infall onto the thin disc, which determines the gap between the formation of the two discs, should be $t_{max}simeq 3.25$ Gyr. The thick disc should have an exponential, small scale length density profile and gas infall on the inner thin disc should be enriched. We compute also the evolution of Gaia-Enceladus system and study the effects of possible interactions with the thick and thin discs. We conclude that the gas lost by Enceladus or even part of it could have been responsible for the formation of the thick disc but not the thin disc.
We study the chemical evolution of the thick and thin discs of the Galaxy by comparing detailed chemical evolution models with recent data from the AMBRE Project. The data suggest that the stars in the thick and thin discs form two distinct sequences with the thick disc stars showing higher [{alpha}/Fe] ratios. We adopt two different approaches to model the evolution of thick and thin discs. In particular, we adopt: i) a two-infall approach where the thick disc forms fast and before the thin disc and by means of a fast gas accretion episode, whereas the thin disc forms by means of a second accretion episode on a longer timescale; ii) a parallel approach, where the two discs form in parallel but at different rates. By comparing our model results with the observed [Mg/Fe] vs. [Fe/H] and the metallicity distribution functions in the two Galactic components, we conclude that the parallel approach can account for a group of {alpha}-enhanced metal rich stars present in the data, whereas the two-infall approach cannot explain these stars unless they are the result of stellar migration. In both approaches, the thick disc has formed on a timescale of accretion of 0.1 Gyr, whereas the thin disc formed on a timescale of 7 Gyr in the solar region. In the two-infall approach a gap in star formation between the thick and thin disc formation of several hundreds of Myr should be present, at variance with the parallel approach where no gap is present.
The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. Using high-resolution FEROS, HARPS, and UVES spectra from the ESO archive, we perform a homogeneous analysis on 6500 FGK Milky Way stars, thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). We chemically characterize the thin and the thick discs, and a metal-rich alpha-rich population. We find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. In thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd-Dy. We also find that the alpha-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/alpha] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and alpha-elements. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. Including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.
We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from textit{Gaia}/DR1, providing reliable age estimates with relative uncertainties of $pm1-2$ Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and a high-[Mg/Fe] sequence, which are often associated with the thick disk. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. The high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for both sequences, the high-[Mg/Fe] sequence has lower velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. Identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.
We have obtained high-resolution spectra and carried out a detailed elemental abundance analysis for a new sample of 899 F and G dwarf stars in the Solar neighbourhood. The results allow us to, in a multi-dimensional space consisting of stellar ages, detailed elemental abundances, and full kinematic information for the stars, study and trace their respective origins. Here we briefly address selection criteria and discuss how to define a thick disc star. The results are discussed in the context of galaxy formation.
Due to its proximity, the Milky Way nuclear star cluster provides us with a wealth of data not available in other galactic nuclei. In particular, with adaptive optics, we can observe the detailed properties of individual stars, which can offer insight into the origin and evolution of the cluster. We summarize work on the central parsec of the Galactic center based on imaging and spectroscopic observations at the Keck and Gemini telescopes. These observations include stellar positions in two dimension and the velocity in three dimensions. Spectroscopic observations also enable measurements of the physical properties of individual stars, such as the spectral type and in some cases the effective temperature, metallicity, and surface gravity. We present a review of our latest measurements of the density profiles and luminosity functions of the young and old stars in this region. These observations show a complex stellar population with a young (4-6 Myr) compact star cluster in the central 0.5 pc embedded in an older and much more massive nuclear star cluster. Surprisingly, the old late-type giants do not show a cusp profile as long been expected from theoretical work. The solution to the missing cusp problem may offer us insight into the dynamical evolution of the cluster. Finally, we also discuss recent work on the metallicity of stars in this region and how they might be used to trace their origin. The nuclear star cluster shows a large variation in metallicity ([M/Fe]). The majority of the stars have higher than solar metallicity, with about 6% having [M/Fe] $< -0.5$. These observations indicate that the NSC was not built from the globular clusters that we see today. The formation of the nuclear star cluster is more likely from the inward migration of gas originating in the disk of the Milky Way.