Do you want to publish a course? Click here

Triangle singularity as the origin of $X_0(2900)$ and $X_1(2900)$ observed in $B^+to D^+ D^- K^+$

121   0   0.0 ( 0 )
 Added by Ju-Jun Xie
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The LHCb collaboration reported the observation of a narrow peak in the $D^- K^+$ invariant mass distributions from the $B^+to D^+ D^- K^+$ decay. The peak is parameterized in terms of two resonances $X_0(2900)$ and $X_1(2900)$ with the quark contents $bar{c}bar{s}ud$, and their spin-parity quantum numbers are $0^+$ and $1^-$, respectively. We investigate the rescattering processes which may contribute to the $B^+to D^+ D^- K^+$ decays. It is shown that the $D^{*-}K^{*+}$ rescattering via the $chi_{c1}K^{*+}D^{*-}$ loop or the $bar{D}_{1}^{0}K^{0}$ rescattering via the $D_{sJ}^{+}bar{D}_{1}^{0}K^{0}$ loop simulate the $X_0(2900)$ and $X_1(2900)$ structures. Such phenomena are due to the analytical property of the scattering amplitudes with the triangle singularities located to the vicinity of the physical boundary.



rate research

Read More

80 - Hao Chen , Hong-Rong Qi , 2021
The analyses of the LHCb data on X(2900) in the D^- K^+ spectrum are performed. Both dynamically generated and explicitly introduced X_1(2900) are considered. The results show that both these two approaches support the interpretation of X_1(2900) as a bar{D}_1 K molecular state, with J^{P}=1^- and an iso-singlet interpretation is much more favorable. The effect of triangle singularity on the production of X_1(2900) is also discussed, and it is found that it cannot be interpreted as a pure triangle cusp.
We revisit, improve and complete some recent estimates of the $0^{+}$ and $1^-$ open charm $(bar c bar d)(us)$ tetraquarks and the corresponding molecules masses and decay constants from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LSR) within stability criteria where the factorised perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the $D^-K^+$ invariant mass recently reported by LHCb from $B^+to D^+(D^-K^+)$ decays. We expect that the bump near the $D^-K^+$ threshold can be originated from the $0^{++}(D^-K^+)$ molecule and/or $D^-K^+$ scattering. The prominent $X_{0}$(2900) scalar peak and the bump $X_J(3150)$ (if $J=0$) can emerge from a {it minimal mixing model}, with a tiny mixing angle $theta_0simeq (5.2pm 1.9)^0$, between a scalar {it Tetramole} (${cal T_M}_0$) (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers) having a mass $M_{{cal T_M}_0}$=2743(18) MeV and the first radial excitation of the $D^-K^+$ molecule with mass $M_{(DK)_1}=3678(310)$ MeV. In an analogous way, the $X_1$(2900) and the $X_J(3350)$ (if $J=1$) could be a mixture between the vector {it Tetramole} $({cal T_M}_1)$ with a mass $M_{{cal T_M}_1}=2656(20)$ MeV and its first radial excitation having a mass $M_{({cal T_M}_1)_1}=4592(141)$ MeV with an angle $theta_1simeq (9.1pm 0.6)^0$. A (non)-confirmation of the previous {it minimal mixing models} requires an experimental identification of the quantum numbers of the bumps at 3150 and 3350 MeV.
In this work, we systematically investigate the heavy-strange meson systems, $D^{(*)}K^{(*)}/bar{B}^{(*)}K^{(*)}$ and $bar{D}^{(*)}K^{(*)}/B^{(*)}K^{(*)}$, to study possible molecules in a quasipotenial Bethe-Salpter equation approach together with the one-boson-exchange model. The potential is achieved with the help of the hidden-gau ge Lagrangians. Molecular states are found from all six S-wave isoscalar interactions of $D^{(*)}K^{(*)}/bar{B}^{(*)}K^{(*)}$. The charmed-strange mesons $D^*_{s0}(2317)$ and $D_{s1}(2460)$ can be related to the ${D}K$ and $D^*K$ states with spin parities $0^+$ and $1^+$, respectively. The recent observed $B_{sJ}(6158)$ may be assigned as a $bar{B}K^*$ molecular state with $1^+$. Four molecular states are produced from the interactions of $bar{D}^{(*)}K^{(*)}/B^{(*)}K^{(*)}$, among which the $bar{D}^*{K}^*$ molecular state with $0^+$ can be related to the $X_0(2900)$. No isovector molecular states are found in the interactions considered. The current results are helpful to understand the internal structure of $D^*_{s0}(2317)$, $D_{s1}(2460)$, $X_0(2900)$, and new $B_{sJ}$ states. The experimental research for more heavy-strange meson molecules are suggested.
The COMPASS experiment recently discovered a new isovector resonance-like signal with axial-vector quantum numbers, the $a_1(1420)$, decaying to $f_0(980)pi$. With a mass too close to and a width smaller than the axial-vector ground state $a_1(1260)$, it was immediately interpreted as a new light exotic meson, similar to the $X$, $Y$, $Z$ states in the hidden-charm sector. We show that a resonance-like signal fully matching the experimental data is produced by the decay of the $a_1(1260)$ ground state into $K^ast(Kpi)bar{K}$ and subsequent rescattering through a triangle singularity into the coupled $f_0(980)pi$ channel. The amplitude for this process is calculated using a novel method based on partial-wave projections. For the first time, the triangle singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having less parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time that a resonance-like structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
108 - Bo Wang , Shi-Lin Zhu 2021
In this work, the $S$- and $P$-wave $bar{D}^ast K^ast$ interactions are studied in a coupled-channel formalism to understand the recently observed $X_0(2900)$ and $X_1(2900)$ at LHCb. The experimental event distributions can be well described, and two states with $I(J^P)=0(0^+)$ and $0(1^-)$ are yielded in an unified framework with the same set of parameters. Their masses and widths are determined to be $[m,Gamma]_{0^+}=[2873.2^{+10.8}_{-12.2},72.2^{+9.6}_{-8.3}]$ MeV and $[m,Gamma]_{1^-}=[2905.6^{+14.6}_{-10.7},52.5_{-1.3}^{+9.5}]$ MeV from the pole analyses, respectively. The masses of the $0^+$ and $1^-$ states are consistent with the experimental data, but the width of the $0^+$ state is larger than that of the $1^-$ one. The $X_1(2900)$ can be interpreted as the $P$-wave excitation of the ground-state $X_0(2900)$ in the hadronic molecular picture. The $S$- and $P$-wave multiplets in the $bar{D}^ast K^ast$ system have many members, so the present peak in the $D^-K^+$ invariant mass distributions might contain multi subpeaks. In order to probe the fine structures behind the single whole peak now, more refined measurements in the $B^+to D^+D^-K^+$ decay channel are necessary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا