Do you want to publish a course? Click here

Precision Multi-Mode Dielectric Characterization of a Crystalline Perovskite Enables Determination of the Temperature-Dependent Phase Transitions

54   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simple perovskite crystals undergo structural phase transitions on cooling to low temperatures, which significantly change the material properties of the crystal. In this work we rigorously characterize the temperature evolution of permittivity of a perovskite crystal as it undergoes phase transitions. In particular, we have undertaken precision measurements of a single crystal of Strontium Titanate from 294.6 K to 5.6 K, by measuring the frequency of multiple microwave transverse electric and magnetic resonant modes simultaneously. The multi-mode microwave measurement technique of resonant frequency used in this work allows high precision determination of any induced anisotropy of the permittivity as the crystal undergoes structural phase transitions. Compared with previous results we unequivocally show that the permittivity has an isotropic value of $316.3pm2.2$ at room temperature, consistent with its well-known cubic structure, and determine the onset of dielectric anisotropy as the crystal is cooled to lower temperatures. We show that the crystal exhibits uniaxial anisotropy in the permittivity below 105 K when the structure becomes tetragonal, and exhibits biaxial anisotropy in the permittivity below 51 K when the structure becomes orthorhombic.



rate research

Read More

Hexagonal YMnO$_3$ is well known for the co-occurrence of ferroelectricity and antiferromagnetism at low temperatures. Using temperature-dependent spectroscopic ellipsometry at an $a$-plane oriented single crystal, we show how the dielectric function is affected by the magnetic order transition at the Neel temperature. We focus especially on the pronounced charge transfer transitions around (1.6-1.7)eV which are strongly connected to Mn 3$d$ electrons. If described with a Bose-Einstein model, the temperature dependency of their energy and broadening is characterized by effective phonon energies not larger than 8meV. We argue that this is a hint for the occurrence of a soft phonon mode related to the antiferromagnetic phase transition. This is observed in both tensor components of the dielectric function, parallel and perpendicular to the crystallographic $c$-axis. Furthermore, a suitable parametrization for the uniaxial dielectric function is presented for the NIR-VUV spectral range. The broad transitions at energies higher than a critical point-like bandgap do not show a clear temperature dependence. We also observe some weak discrete absorption features around the strong charge transfer transitions with energies matching well to low-temperature photoluminescence signals.
Specific heat, magnetic torque, and magnetization studies of LiCoPO4 olivine are presented. They show that an unique set of physical properties of LiCoPO4 leads to the appearance of features characteristic of 2D Ising systems near the Neel temperature, T_N =21.6 K, and to the appearance of an uncommon effect of influence of magnetic field on the magnetocrystalline anisotropy. The latter effect manifests itself as a first-order transition, discovered at ~9 K, induced by magnetic field of 8 T. Physical nature of this transition was explained and a model describing experimental dependences satisfactorily was proposed.
We extend the nested sampling algorithm to simulate materials under periodic boundary and constant pressure conditions, and show how it can be used to determine the complete equilibrium phase diagram, for a given potential energy function, efficiently and in a highly automated fashion. The only inputs required are the composition and the desired pressure and temperature ranges, in particular, solid-solid phase transitions are recovered without any a priori knowledge about the structure of solid phases. We benchmark and showcase the algorithm on the periodic Lennard-Jones system, aluminium and NiTi.
Nuclear site analysis methods are used to enumerate the normal modes of $ABX_{3}$ perovskite polymorphs with octahedral rotations. We provide the modes of the fourteen subgroups of the cubic aristotype describing the Glazer octahedral tilt patterns, which are obtained from rotations of the $BX_{6}$ octahedra with different sense and amplitude about high symmetry axes. We tabulate all normal modes of each tilt system and specify the contribution of each atomic species to the mode displacement pattern, elucidating the physical meaning of the symmetry unique modes. We have systematically generated 705 schematic atomic displacement patterns for the normal modes of all 15 (14 rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative examples how to use these tables to identify the octahedral rotations, symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing distortions of the $BX_{6}$ octahedra, and the associated Raman selection rules. We anticipate that these tables and schematics will be useful in understanding the lattice dynamics of bulk perovskites and would serve as reference point in elucidating the atomic origin of a wide range of physical properties in synthetic perovskite thin films and superlattices.
We report a detailed magnetic, dielectric and Raman studies on partially disordered and biphasic double perovskite La2NiMnO6. DC and AC magnetic susceptibility measurements show two magnetic anomalies at TC1 ~ 270 K and TC2 ~ 240 K, which may indicate the ferromagnetic ordering of the monoclinic and rhombohedral phases, respectively. A broad peak at a lower temperature (Tsg ~ 70 K) is also observed indicating a spin-glass transition due to partial anti-site disorder of Ni2+ and Mn4+ ions. Unlike the pure monoclinic phase, the biphasic compound exhibits a broad but a clear dielectric anomaly around 270 K which is a signature of magneto-dielectric effect. Temperature-dependent Raman studies between the temperature range 12 K to 300 K in a wide spectral range from 220 cm-1 to 1530 cm-1 reveal a strong renormalization of the first as well as second-order Raman modes associated with the (Ni/Mn)O6 octahedra near TC1 implying a strong spin-phonon coupling. In addition, an anomaly is seen in the vicinity of spin-glass transition temperature in the temperature dependence of the frequency of the anti-symmetric stretching vibration of the octahedra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا