Do you want to publish a course? Click here

Robust acoustic pulling using chiral surface waves

243   0   0.0 ( 0 )
 Added by Neng Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that long-range and robust acoustic pulling can be achieved by using a pair of one-way chiral surface waves supported on the interface between two phononic crystals composed of spinning cylinders with equal but opposite spinning velocities embedded in water. When the chiral surface mode with a relative small Bloch wave vector is excited, the particle located in the interface waveguide will scatter the excited surface mode to another chiral surface mode with a greater Bloch wave vector, resulting in an acoustic pulling force, irrespective of the size and material of the particle. Thanks to the backscattering immunity of the chiral surface waves against local disorders, the particle can be pulled following a flexible trajectory as determined by the shape of the interface. As such, this new acoustic pulling scheme overcomes some of the limitations of the traditional acoustic pulling using structured beams, such as short pulling distances, straight-line type pulling and strong dependence on the scattering properties of the particle. Our work may also inspire the application of topological acoustics to acoustic manipulations.



rate research

Read More

Recently, it was shown that surface electromagnetic waves at interfaces between continuous homogeneous media (e.g., surface plasmon-polaritons at metal-dielectric interfaces) have a topological origin [K. Y. Bliokh et al., Nat. Commun. 10, 580 (2019)]. This is explained by the nontrivial topology of the non-Hermitian photon helicity operator in the Weyl-like representation of Maxwell equations. Here we analyze another type of classical waves: longitudinal acoustic waves corresponding to spinless phonons. We show that surface acoustic waves, which appear at interfaces between media with opposite-sign densities, can be explained by similar topological features and the bulk-boundary correspondence. However, in contrast to photons, the topological properties of sound waves originate from the non-Hermitian four-momentum operator in the Klein-Gordon representation of acoustic fields.
Recently, the concept of valley pseudospin, labeling quantum states of energy extrema in momentum space, has attracted enormous attention because of its potential as a new type of information carrier. Here, we present surface acoustic wave (SAW) waveguides, which utilize and transport valley pseudospins in two-dimensional SAW phononic crystals (PnCs). In addition to a direct visualization of the valley-dependent states excited from the corresponding chiral sources, the backscattering suppression of SAW valley-dependent edge states transport is observed in sharply curved interfaces. By means of band structure engineering, elastic wave energy in the SAW waveguides can be transported with remarkable robustness, which is very promising for new generations of integrated solid-state phononic circuits with great versatility.
This paper proposes a new method to achieve robust optical pulling of particles by using an air waveguide sandwiched between two chiral hyperbolic metamaterials. The pulling force is induced by mode conversion between a pair of one-way-transport surface-arc waves supported on the two metamaterial surfaces of the waveguide. The surface arcs bridge the momentum gaps between isolated bulk equifrequency surfaces (EFSs) and are topologically protected by the nontrivial Chern numbers of the EFSs. When an incident surface-arc wave with a relatively small wavenumber $k_{x1}$ is scattered by the particle, a part of its energy is transferred to the other surface-arc mode with $k_{x2}(>k_{x1}). Because the electromagnetic wave acquires an additional forward momentum from the particle proportional to $k_{x2}-k_{x1}$ during this process, the particle will always be subjected to an optical pulling force irrespective of its material, shape and size. Since the chiral surface-arc waves are immune to backscattering from local disorders and the metamaterials are isotropic in the xy plane, robust optical pulling can be achieved in a curved air waveguide and can go beyond standard optical pulling mechanisms which are limited to pull in a straight-line.
We demonstrate that photoemission properties of GaAs photocathodes (PCs) can be altered by surface acoustic waves (SAWs) generated on the PC surface due to dynamical piezoelectric fields of SAWs. Simulations with COMSOL indicate that electron effective lifetime in p-doped GaAs may increase by a factor of 10x to 20x. It implies a significant, by a factor of 2x to 3x, increase of quantum efficiency (QE) for GaAs PCs. Essential steps in device fabrication are demonstrated, including deposition of an additional layer of ZnO for piezoelectric effect enhancement, measurements of I-V characteristic of the SAW device, and ability to survive high-temperature annealing.
Surface acoustic wave (SAW) is utilized in diverse fields ranging from physics, engineering, to biology, for transducing, sensing and processing various signals. Optical imaging of SAW provides valuable information since the amplitude and the phase of the displacement field can be measured locally with the resolution limited by the spot size of the optical beam. So far, optical imaging techniques rely on modulation of optical path, phase, or diffraction associated with SAW. Here, we report experiments showing that SAW can be imaged with an optical polarimetry. Since the amount of polarization rotation can be straightforwardly calibrated when polarimeters work in the shot-noise-limited regime, the polarimetric imaging of SAW is beneficial for quantitative studies of SAW-based technologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا