Do you want to publish a course? Click here

Online Multitask Learning with Long-Term Memory

73   0   0.0 ( 0 )
 Added by Mark Herbster
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We introduce a novel online multitask setting. In this setting each task is partitioned into a sequence of segments that is unknown to the learner. Associated with each segment is a hypothesis from some hypothesis class. We give algorithms that are designed to exploit the scenario where there are many such segments but significantly fewer associated hypotheses. We prove regret bounds that hold for any segmentation of the tasks and any association of hypotheses to the segments. In the single-task setting this is equivalent to switching with long-term memory in the sense of [Bousquet and Warmuth; 2003]. We provide an algorithm that predicts on each trial in time linear in the number of hypotheses when the hypothesis class is finite. We also consider infinite hypothesis classes from reproducing kernel Hilbert spaces for which we give an algorithm whose per trial time complexity is cubic in the number of cumulative trials. In the single-task special case this is the first example of an efficient regret-bounded switching algorithm with long-term memory for a non-parametric hypothesis class.



rate research

Read More

This paper proposes a novel memory-based online video representation that is efficient, accurate and predictive. This is in contrast to prior works that often rely on computationally heavy 3D convolutions, ignore actual motion when aligning features over time, or operate in an off-line mode to utilize future frames. In particular, our memory (i) holds the feature representation, (ii) is spatially warped over time to compensate for observer and scene motions, (iii) can carry long-term information, and (iv) enables predicting feature representations in future frames. By exploring a variant that operates at multiple temporal scales, we efficiently learn across even longer time horizons. We apply our online framework to object detection in videos, obtaining a large 2.3 times speed-up and losing only 0.9% mAP on ImageNet-VID dataset, compared to prior works that even use future frames. Finally, we demonstrate the predictive property of our representation in two novel detection setups, where features are propagated over time to (i) significantly enhance a real-time detector by more than 10% mAP in a multi-threaded online setup and to (ii) anticipate objects in future frames.
Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden states, cell states and outputs. Independently reducing the sizes of basic structures can result in inconsistent dimensions among them, and consequently, end up with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously decrease the sizes of all basic structures by one and thereby always maintain the dimension consistency. By learning ISS within LSTM units, the obtained LSTMs remain regular while having much smaller basic structures. Based on group Lasso regularization, our method achieves 10.59x speedup without losing any perplexity of a language modeling of Penn TreeBank dataset. It is also successfully evaluated through a compact model with only 2.69M weights for machine Question Answering of SQuAD dataset. Our approach is successfully extended to non- LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is publicly available at https://github.com/wenwei202/iss-rnns
62 - Wei Wang , UK 2018
Advanced travel information and warning, if provided accurately, can help road users avoid traffic congestion through dynamic route planning and behavior change. It also enables traffic control centres mitigate the impact of congestion by activating Intelligent Transport System (ITS) proactively. Deep learning has become increasingly popular in recent years, following a surge of innovative GPU technology, high-resolution, big datasets and thriving machine learning algorithms. However, there are few examples exploiting this emerging technology to develop applications for traffic prediction. This is largely due to the difficulty in capturing random, seasonal, non-linear, and spatio-temporal correlated nature of traffic data. In this paper, we propose a data-driven modelling approach with a novel hierarchical D-CLSTM-t deep learning model for short-term traffic speed prediction, a framework combined with convolutional neural network (CNN) and long short-term memory (LSTM) models. A deep CNN model is employed to learn the spatio-temporal traffic patterns of the input graphs, which are then fed into a deep LSTM model for sequence learning. To capture traffic seasonal variations, time of the day and day of the week indicators are fused with trained features. The model is trained end-to-end to predict travel speed in 15 to 90 minutes in the future. We compare the model performance against other baseline models including CNN, LGBM, LSTM, and traditional speed-flow curves. Experiment results show that the D-CLSTM-t outperforms other models considerably. Model tests show that speed upstream also responds sensibly to a sudden accident occurring downstream. Our D-CLSTM-t model framework is also highly scalable for future extension such as for network-wide traffic prediction, which can also be improved by including additional features such as weather, long term seasonality and accident information.
Most deep reinforcement learning algorithms are data inefficient in complex and rich environments, limiting their applicability to many scenarios. One direction for improving data efficiency is multitask learning with shared neural network parameters, where efficiency may be improved through transfer across related tasks. In practice, however, this is not usually observed, because gradients from different tasks can interfere negatively, making learning unstable and sometimes even less data efficient. Another issue is the different reward schemes between tasks, which can easily lead to one task dominating the learning of a shared model. We propose a new approach for joint training of multiple tasks, which we refer to as Distral (Distill & transfer learning). Instead of sharing parameters between the different workers, we propose to share a distilled policy that captures common behaviour across tasks. Each worker is trained to solve its own task while constrained to stay close to the shared policy, while the shared policy is trained by distillation to be the centroid of all task policies. Both aspects of the learning process are derived by optimizing a joint objective function. We show that our approach supports efficient transfer on complex 3D environments, outperforming several related methods. Moreover, the proposed learning process is more robust and more stable---attributes that are critical in deep reinforcement learning.
Recurrent neural networks (RNNs) with continuous-time hidden states are a natural fit for modeling irregularly-sampled time series. These models, however, face difficulties when the input data possess long-term dependencies. We prove that similar to standard RNNs, the underlying reason for this issue is the vanishing or exploding of the gradient during training. This phenomenon is expressed by the ordinary differential equation (ODE) representation of the hidden state, regardless of the ODE solvers choice. We provide a solution by designing a new algorithm based on the long short-term memory (LSTM) that separates its memory from its time-continuous state. This way, we encode a continuous-time dynamical flow within the RNN, allowing it to respond to inputs arriving at arbitrary time-lags while ensuring a constant error propagation through the memory path. We call these RNN models ODE-LSTMs. We experimentally show that ODE-LSTMs outperform advanced RNN-based counterparts on non-uniformly sampled data with long-term dependencies. All code and data is available at https://github.com/mlech26l/ode-lstms.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا