Do you want to publish a course? Click here

Efficient Knowledge Graph Validation via Cross-Graph Representation Learning

200   0   0.0 ( 0 )
 Added by Yaqing Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in information extraction have motivated the automatic construction of huge Knowledge Graphs (KGs) by mining from large-scale text corpus. However, noisy facts are unavoidably introduced into KGs that could be caused by automatic extraction. To validate the correctness of facts (i.e., triplets) inside a KG, one possible approach is to map the triplets into vector representations by capturing the semantic meanings of facts. Although many representation learning approaches have been developed for knowledge graphs, these methods are not effective for validation. They usually assume that facts are correct, and thus may overfit noisy facts and fail to detect such facts. Towards effective KG validation, we propose to leverage an external human-curated KG as auxiliary information source to help detect the errors in a target KG. The external KG is built upon human-curated knowledge repositories and tends to have high precision. On the other hand, although the target KG built by information extraction from texts has low precision, it can cover new or domain-specific facts that are not in any human-curated repositories. To tackle this challenging task, we propose a cross-graph representation learning framework, i.e., CrossVal, which can leverage an external KG to validate the facts in the target KG efficiently. This is achieved by embedding triplets based on their semantic meanings, drawing cross-KG negative samples and estimating a confidence score for each triplet based on its degree of correctness. We evaluate the proposed framework on datasets across different domains. Experimental results show that the proposed framework achieves the best performance compared with the state-of-the-art methods on large-scale KGs.



rate research

Read More

Knowledge graph (KG) representation learning methods have achieved competitive performance in many KG-oriented tasks, among which the best ones are usually based on graph neural networks (GNNs), a powerful family of networks that learns the representation of an entity by aggregating the features of its neighbors and itself. However, many KG representation learning scenarios only provide the structure information that describes the relationships among entities, causing that entities have no input features. In this case, existing aggregation mechanisms are incapable of inducing embeddings of unseen entities as these entities have no pre-defined features for aggregation. In this paper, we present a decentralized KG representation learning approach, decentRL, which encodes each entity from and only from the embeddings of its neighbors. For optimization, we design an algorithm to distill knowledge from the model itself such that the output embeddings can continuously gain knowledge from the corresponding original embeddings. Extensive experiments show that the proposed approach performed better than many cutting-edge models on the entity alignment task, and achieved competitive performance on the entity prediction task. Furthermore, under the inductive setting, it significantly outperformed all baselines on both tasks.
Predicting missing facts in a knowledge graph (KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works using KG embeddings. While existing KG embedding approaches mainly learn and predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging, since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and the inconsistency of described facts. In this paper, we propose KEnS, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs. KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to combine prediction results from embeddings of multiple language-specific KGs, for which multiple ensemble techniques are investigated. Experiments on five real-world language-specific KGs show that KEnS consistently improves state-of-the-art methods on KG completion, via effectively identifying and leveraging complementary knowledge.
Knowledge graphs (KGs) have helped neural models improve performance on various knowledge-intensive tasks, like question answering and item recommendation. By using attention over the KG, such KG-augmented models can also explain which KG information was most relevant for making a given prediction. In this paper, we question whether these models are really behaving as we expect. We show that, through a reinforcement learning policy (or even simple heuristics), one can produce deceptively perturbed KGs, which maintain the downstream performance of the original KG while significantly deviating from the original KGs semantics and structure. Our findings raise doubts about KG-augmented models ability to reason about KG information and give sensible explanations.
133 - Pei Ke , Haozhe Ji , Yu Ran 2021
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pre-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.
Distance based knowledge graph embedding methods show promising results on link prediction task, on which two topics have been widely studied: one is the ability to handle complex relations, such as N-to-1, 1-to-N and N-to-N, the other is to encode various relation patterns, such as symmetry/antisymmetry. However, the existing methods fail to solve these two problems at the same time, which leads to unsatisfactory results. To mitigate this problem, we propose PairRE, a model with paired vectors for each relation representation. The paired vectors enable an adaptive adjustment of the margin in loss function to fit for complex relations. Besides, PairRE is capable of encoding three important relation patterns, symmetry/antisymmetry, inverse and composition. Given simple constraints on relation representations, PairRE can encode subrelation further. Experiments on link prediction benchmarks demonstrate the proposed key capabilities of PairRE. Moreover, We set a new state-of-the-art on two knowledge graph datasets of the challenging Open Graph Benchmark.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا