Do you want to publish a course? Click here

Advancing Multiple Instance Learning with Attention Modeling for Categorical Speech Emotion Recognition

138   0   0.0 ( 0 )
 Added by Shuiyang Mao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Categorical speech emotion recognition is typically performed as a sequence-to-label problem, i.e., to determine the discrete emotion label of the input utterance as a whole. One of the main challenges in practice is that most of the existing emotion corpora do not give ground truth labels for each segment; instead, we only have labels for whole utterances. To extract segment-level emotional information from such weakly labeled emotion corpora, we propose using multiple instance learning (MIL) to learn segment embeddings in a weakly supervised manner. Also, for a sufficiently long utterance, not all of the segments contain relevant emotional information. In this regard, three attention-based neural network models are then applied to the learned segment embeddings to attend the most salient part of a speech utterance. Experiments on the CASIA corpus and the IEMOCAP database show better or highly competitive results than other state-of-the-art approaches.



rate research

Read More

Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attention network (MMAN) to make use of visual and textual cues in speech emotion recognition. We propose a novel multi-modal attention mechanism, cLSTM-MMA, which facilitates the attention across three modalities and selectively fuse the information. cLSTM-MMA is fused with other uni-modal sub-networks in the late fusion. The experiments show that speech emotion recognition benefits significantly from visual and textual cues, and the proposed cLSTM-MMA alone is as competitive as other fusion methods in terms of accuracy, but with a much more compact network structure. The proposed hybrid network MMAN achieves state-of-the-art performance on IEMOCAP database for emotion recognition.
353 - Shuiyang Mao , P. C. Ching , 2021
Despite the widespread utilization of deep neural networks (DNNs) for speech emotion recognition (SER), they are severely restricted due to the paucity of labeled data for training. Recently, segment-based approaches for SER have been evolving, which train backbone networks on shorter segments instead of whole utterances, and thus naturally augments training examples without additional resources. However, one core challenge remains for segment-based approaches: most emotional corpora do not provide ground-truth labels at the segment level. To supervisely train a segment-based emotion model on such datasets, the most common way assigns each segment the corresponding utterances emotion label. However, this practice typically introduces noisy (incorrect) labels as emotional information is not uniformly distributed across the whole utterance. On the other hand, DNNs have been shown to easily over-fit a dataset when being trained with noisy labels. To this end, this work proposes a simple and effective deep self-learning (DSL) framework, which comprises a procedure to progressively correct segment-level labels in an iterative learning manner. The DSL method produces dynamically-generated and soft emotion labels, leading to significant performance improvements. Experiments on three well-known emotional corpora demonstrate noticeable gains using the proposed method.
Human emotions are inherently ambiguous and impure. When designing systems to anticipate human emotions based on speech, the lack of emotional purity must be considered. However, most of the current methods for speech emotion classification rest on the consensus, e.g., one single hard label for an utterance. This labeling principle imposes challenges for system performance considering emotional impurity. In this paper, we recommend the use of emotional profiles (EPs), which provides a time series of segment-level soft labels to capture the subtle blends of emotional cues present across a specific speech utterance. We further propose the emotion profile refinery (EPR), an iterative procedure to update EPs. The EPR method produces soft, dynamically-generated, multiple probabilistic class labels during successive stages of refinement, which results in significant improvements in the model accuracy. Experiments on three well-known emotion corpora show noticeable gain using the proposed method.
Self-attention models have been successfully applied in end-to-end speech recognition systems, which greatly improve the performance of recognition accuracy. However, such attention-based models cannot be used in online speech recognition, because these models usually have to utilize a whole acoustic sequences as inputs. A common method is restricting the field of attention sights by a fixed left and right window, which makes the computation costs manageable yet also introduces performance degradation. In this paper, we propose Memory-Self-Attention (MSA), which adds history information into the Restricted-Self-Attention unit. MSA only needs localtime features as inputs, and efficiently models long temporal contexts by attending memory states. Meanwhile, recurrent neural network transducer (RNN-T) has proved to be a great approach for online ASR tasks, because the alignments of RNN-T are local and monotonic. We propose a novel network structure, called Memory-Self-Attention (MSA) Transducer. Both encoder and decoder of the MSA Transducer contain the proposed MSA unit. The experiments demonstrate that our proposed models improve WER results than Restricted-Self-Attention models by $13.5 on WSJ and $7.1 on SWBD datasets relatively, and without much computation costs increase.
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا