No Arabic abstract
Topology in quantum matter is typically associated with gapped phases. For example, in symmetry protected topological (SPT) phases, the bulk energy gap localizes edge modes near the boundary. In this work we identify a new mechanism that leads to topological phases which are not only gapless but where the absence of a gap is essential. These `intrinsically gapless SPT phases have no gapped counterpart and are hence also distinct from recently discovered examples of gapless SPT phases. The essential ingredient of these phases is that on-site symmetries act in an anomalous fashion at low energies. Intrinsically gapless SPT phases are found to display several unique properties including (i) protected edge modes that are impossible to realize in a gapped system with the same symmetries, (ii) string order parameters that are likewise forbidden in gapped phases, and (iii) constraints on the phase diagram obtained upon perturbing the phase. We verify predictions of the general theory in a specific realization protected by $mathbb Z_4$ symmetry, the one dimensional Ising-Hubbard chain, using both numerical simulations and effective field theory. We also discuss extensions to higher dimensions and possible experimental realizations.
We classify subsystem symmetry-protected topological (SSPT) phases in $3+1$D protected by planar subsystem symmetries, which are dual to abelian fracton topological orders. We distinguish between weak SSPTs, which can be constructed by stacking $2+1$D SPTs, and strong SSPTs, which cannot. We identify signatures of strong phases, and show by explicit construction that such phases exist. A classification of strong phases is presented for an arbitrary finite abelian group. Finally, we show that fracton orders realizable via $p$-string condensation are dual to weak SSPTs, while strong SSPTs do not admit such a realization.
We study gapless quantum spin chains with spin 1/2 and 1: the Fredkin and Motzkin models. Their entangled groundstates are known exactly but not their excitation spectra. We first express the groundstates in the continuum which allows for the calculation of spin and entanglement properties in a unified fashion. Doing so, we uncover an emergent conformal-type symmetry, thus consolidating the connection to a widely studied family of Lifshitz quantum critical points in 2d. We then obtain the low lying excited states via large-scale DMRG simulations and find that the dynamical exponent is z = 3.2 in both cases. Other excited states show a different z, indicating that these models have multiple dynamics. Moreover, we modify the spin-1/2 model by adding a ferromagnetic Heisenberg term, which changes the entire spectrum. We track the resulting non-trivial evolution of the dynamical exponents using DMRG. Finally, we exploit an exact map from the quantum Hamiltonian to the non-equilibrium dynamics of a classical spin chain to shed light on the quantum dynamics.
We propose that the properties of the capacity of entanglement (COE) in gapless systems can efficiently be investigated through the use of the distribution of eigenvalues of the reduced density matrix (RDM). The COE is defined as the fictitious heat capacity calculated from the entanglement spectrum. Its dependence on the fictitious temperature can reflect the low-temperature behavior of the physical heat capacity, and thus provide a useful probe of gapless bulk or edge excitations of the system. Assuming a power-law scaling of the COE with an exponent $alpha$ at low fictitious temperatures, we derive an analytical formula for the distribution function of the RDM eigenvalues. We numerically test the effectiveness of the formula in relativistic free scalar boson in two spatial dimensions, and find that the distribution function can detect the expected $alpha=3$ scaling of the COE much more efficiently than the raw data of the COE. We also calculate the distribution function in the ground state of the half-filled Landau level with short-range interactions, and find a better agreement with the $alpha=2/3$ formula than with the $alpha=1$ one, which indicates a non-Fermi-liquid nature of the system.
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
We extend the Hertz-Millis theory of quantum phase transitions in itinerant electron systems to phases with broken discrete symmetry. Using a set of coupled flow equations derived within the functional renormalization group framework, we compute the second order phase transition line T_c(delta), with delta a non-thermal control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum and classical fluctuations at different energy scales, and we compare the Ginzburg temperature T_G to the transition temperature T_c, the latter being associated with a non-Gaussian fixed-point.