No Arabic abstract
How long until this paper is forgotten? Collective forgetting is the process by which the attention received by cultural pieces decays as time passes. Recent work modeled this decay as the result of two different processes, one linked to communicative memory --memories sustained by human communication-- and cultural memory --memories sustained by the physical recording of content. Yet, little is known on how the collective forgetting dynamic changes over time. Are older cultural pieces forgotten at a lower rate than newer ones? Here, we study the temporal changes of collective memory and attention by focusing on two knowledge communities: inventors and physicists. We use data on patents from the United States Patent and Trademark Office (USPTO) and physics papers published in the American Physical Society (APS) to quantify how collective forgetting has changed over time. The model enables us to distinguish between two branches of forgetting. One branch is short-lived, going directly from communicative memory to oblivion. The other one is long-lived going from communicative to cultural memory and then to oblivion. The data analysis shows an increasing forgetting rate for both communities as the information grows. Furthermore, these knowledge communities seem to be increasing their selectivity at storing valuable cultural pieces in their cultural memory. These findings provide empirical confirmation on the forgetting as an annulment hypothesis and show that knowledge communities can effectively slow down the rising of collective forgetting at improving their cultural selectivity.
We analyze the game of go from the point of view of complex networks. We construct three different directed networks of increasing complexity, defining nodes as local patterns on plaquettes of increasing sizes, and links as actual successions of these patterns in databases of real games. We discuss the peculiarities of these networks compared to other types of networks. We explore the ranking vectors and community structure of the networks and show that this approach enables to extract groups of moves with common strategic properties. We also investigate different networks built from games with players of different levels or from different phases of the game. We discuss how the study of the community structure of these networks may help to improve the computer simulations of the game. More generally, we believe such studies may help to improve the understanding of human decision process.
We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Rand index and of the adjusted Wallace index respectively. The detection of cores is highly precise although the accuracy of the methodology can be limited in some cases.
Although a number of models have been developed to investigate the emergence of culture and evolutionary phases in social systems, one important aspect has not yet been sufficiently emphasized. This is the structure of the underlaying network of social relations serving as channels in transmitting cultural traits, which is expected to play a crucial role in the evolutionary processes in social systems. In this paper we contribute to the understanding of the role of the network structure by developing a layered ego-centric network structure based model, inspired by the social brain hypothesis, to study transmission of cultural traits and their evolution in social network. For this model we first find analytical results in the spirit of mean-field approximation and then to validate the results we compare them with the results of extensive numerical simulations.
Researchers use community-detection algorithms to reveal large-scale organization in biological and social networks, but community detection is useful only if the communities are significant and not a result of noisy data. To assess the statistical significance of the network communities, or the robustness of the detected structure, one approach is to perturb the network structure by removing links and measure how much the communities change. However, perturbing sparse networks is challenging because they are inherently sensitive; they shatter easily if links are removed. Here we propose a simple method to perturb sparse networks and assess the significance of their communities. We generate resampled networks by adding extra links based on local information, then we aggregate the information from multiple resampled networks to find a coarse-grained description of significant clusters. In addition to testing our method on benchmark networks, we use our method on the sparse network of the European Court of Justice (ECJ) case law, to detect significant and insignificant areas of law. We use our significance analysis to draw a map of the ECJ case law network that reveals the relations between the areas of law.