Learning Lyapunov Functions for Piecewise Affine Systems with Neural Network Controllers


Abstract in English

We propose a learning-based method for Lyapunov stability analysis of piecewise affine dynamical systems in feedback with piecewise affine neural network controllers. The proposed method consists of an iterative interaction between a learner and a verifier, where in each iteration, the learner uses a collection of samples of the closed-loop system to propose a Lyapunov function candidate as the solution to a convex program. The learner then queries the verifier, which solves a mixed-integer program to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the stability condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. We design the learner and the verifier based on the analytic center cutting-plane method, in which the verifier acts as the cutting-plane oracle to refine the set of Lyapunov function candidates. We show that when the set of Lyapunov functions is full-dimensional in the parameter space, the overall procedure finds a Lyapunov function in a finite number of iterations. We demonstrate the utility of the proposed method in searching for quadratic and piecewise quadratic Lyapunov functions.

Download