Rotation-time symmetry in bosonic systems and the existence of exceptional points in the absence of $mathcal{PT}$ symmetry


Abstract in English

We study symmetries of open bosonic systems in the presence of laser pumping. Non-Hermitian Hamiltonians describing these systems can be parity-time (${cal{PT}}$) symmetric in special cases only. Systems exhibiting this symmetry are characterised by real-valued energy spectra and can display exceptional points, where a symmetry-breaking transition occurs. We demonstrate that there is a more general type of symmetry, i.e., rotation-time (${cal{RT}}$) symmetry. We observe that ${cal{RT}}$-symmetric non-Hermitian Hamiltonians exhibit real-valued energy spectra which can be made singular by symmetry breaking. To calculate the spectra of the studied bosonic non-diagonalisable Hamiltonians we apply diagonalisation methods based on bosonic algebra. Finally, we list a versatile set rules allowing to immediately identifying or constructing ${cal{RT}}$-symmetric Hamiltonians. We believe that our results on the ${cal{RT}}$-symmetric class of bosonic systems and their spectral singularities can lead to new applications inspired by those of the ${cal{PT}}$-symmetric systems.

Download