Do you want to publish a course? Click here

Zero-range process in random environment

117   0   0.0 ( 0 )
 Added by Ellen Saada
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We survey our recent articles dealing with one dimensional attractive zero range processes moving under site disorder. We suppose that the underlying random walks are biased to the right and so hyperbolic scaling is expected. Under the conditions of our model the process admits a maximal invariant measure. The initial focus of the project was to find conditions on the initial law to entail convergence in distribution to this maximal distribution, when it has a finite density. Somewhat surprisingly, necessary and sufficient conditions were found. In this part hydrody-namic results were employed chiefly as a tool to show distributional convergence but subsequently we developed a theory for hydrodynamic limits treating profiles possessing densities that did not admit corresponding equilibria. Finally we derived strong local equilibrium results.

rate research

Read More

We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We describe precise asymptotics of upper large deviations, i.e. $mathbb{P}[Z_n > e^{rho n}]$. Moreover in the subcritical case, under the Cramer condition on the mean of the reproduction law, we investigate large deviations-type estimates for the first passage time of the branching process in question and its total population size.
We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. For any given environment satisfying suitable averaging properties, we establish a hydrodynamic limit given by a scalar conservation law including the domain above critical density, where the flux is shown to be constant.
We establish necessary and sufficient conditions for weak convergence to the upper invariant measure for asymmetric nearest neighbour zero range processes with non homogeneous jump rates. The class of environments considered is close to that considered by Andjel, Ferrari, Guiol and Landim, while our class of processes is broader. We also give a simpler proof of a result of Ferrari and Sisko with weaker assumptions.
We discuss necessary and sufficient conditions for the convergence of disordered asymmetric zero-range process to the critical invariant measures.
110 - Dominik Schmid 2018
We consider the exclusion process on segments of the integers in a site-dependent random environment. We assume to be in the ballistic regime in which a single particle has positive linear speed. Our goal is to study the mixing time of the exclusion process when the number of particles is linear in the size of the segment. We investigate the order of the mixing time depending on the support of the environment distribution. In particular, we prove for nestling environments that the order of the mixing time is different than in the case of a single particle.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا