Do you want to publish a course? Click here

Nonperturbative quark-antiquark interactions in mesonic form factors

63   0   0.0 ( 0 )
 Added by Ismail Zahed
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The existing theory of hard exclusive QCD processes is based on two assumptions: (i) $factorization$ into a $hard,block$ times light front distribution amplitudes (DAs); (ii) use of perturbative gluon exchanges within the hard block. However, unlike DIS and jet physics, the characteristic momentum transfer $Q$ involved in the factorized block is not large enough for this theory to be phenomenologically successful. In this work, we revisit the latter assumption (ii), by explicitly calculating the $instanton-induced$ contributions to the hard block, and show that they contribute substantially to the vector, scalar and gravitational form factors of the pseudoscalar, scalar and vector mesons, over a wide range of momentum transfer.



rate research

Read More

We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.
Precise theoretical predictions derived from the Standard Model are a key ingredient in searches for new physics in the flavor sector. The large mass and long lifetime of the $b$ quark make processes involving $b$ quarks of particular interest. We use lattice simulations to perform nonperturbative QCD calculations for semileptonic $B_{(s)}$ decays. We present results from our determinations of $B_sto D_s ell u$ and $B_sto K ell u$ semileptonic form factors and provide an outlook for our $Bto piell u$ calculation. In addition we discuss the determination of $R$-ratios testing lepton-flavor universality and suggest use of an improved ratio. Our calculations are based on the set of 2+1 flavor domain wall Iwasaki gauge field configurations generated by the RBC-UKQCD collaboration featuring three lattice spacings of $1/a = 1.78$, $2.38$, and $2.79,text{GeV}$. Heavy $b$-quarks are simulated using the relativistic heavy quark action.
109 - Gouranga C. Nayak 2005
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunneling result, which depends only on one gauge invariant quantity |E|, the strength of the chromo-electric field, we find that the exact result for the p_T distribution for quark (antiquark) production rate depends on two independent Casimir (gauge) invariants, E^aE^a and [d_{abc}E^aE^bE^c]^2.
57 - Raza Sabbir Sufian 2016
We determine the nucleon neutral weak electromagnetic form factors $G^{Z,p(n)}_{E,M}$ by combining results from light-front holographic QCD and lattice QCD calculations. We deduce nucleon electromagnetic form factors from light-front holographic QCD which provides a good parametrization of the experimental data of the nucleon electromagnetic form factors in the entire momentum transfer range and isolate the strange quark electromagnetic form factors $G^{s}_{E,M}$ using lattice QCD. From these calculations, we obtain precise estimates of the neutral weak form factors in the momentum transfer range of $0,text{GeV}^2leq Q^2 leq 0.5 ,text{GeV}^2 $. From the lattice QCD calculation, we present $Q^2$-dependence of the strange quark form factors. We also deduce the neutral weak Dirac and Pauli form factors $F_{1,2}^{Z,p(n)}$ of the proton and the neutron.
Scale factor matrices relating mesonic fields in chiral Lagrangians and quark-level operators of QCD sum-rules are shown to be constrained by chiral symmetry, resulting in universal scale factors for each chiral nonet. Built upon this interplay between chiral Lagrangians and QCD sum-rules, the scale factors relating the $a_0$ isotriplet scalar mesons to their underlying quark composite field were recently determined. It is shown that the same technique when applied to $K_0^*$ isodoublet scalars reproduces the same scale factors, confirming the universality property and further validating this connection between chiral Lagrangians and QCD sum-rules which can have nontrivial impacts on our understanding of the low-energy QCD, in general, and the physics of scalar mesons in particular.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا