Do you want to publish a course? Click here

The First Step Towards Modeling Unbreakable Malware

59   0   0.0 ( 0 )
 Added by Tiantian Ji
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Constructing stealthy malware has gained increasing popularity among cyber attackers to conceal their malicious intent. Nevertheless, the constructed stealthy malware still fails to survive the reverse engineering by security experts. Therefore, this paper modeled a type of malware with an unbreakable security attribute-unbreakable malware (UBM), and made a systematical probe into this new type of threat through modeling, method analysis, experiments, evaluation and anti-defense capacity tests. Specifically, we first formalized the definition of UBM and analyzed its security attributes, put forward two core features that are essential for realizing the unbreakable security attribute, and their relevant tetrad for evaluation. Then, we worked out and implemented four algorithms for constructing UBM, and verified the unbreakable security attribute based on our evaluation of the abovementioned two core features. After that, the four verified algorithms were employed to construct UBM instances, and by analyzing their volume increment and anti-defense capacity, we confirmed real-world applicability of UBM. Finally, to address the new threats incurred by UBM to the cyberspace, this paper explored some possible defense measures, with a view to establishing defense systems against UBM attacks.



rate research

Read More

We performed the first systematic study of a new attack on Ethereum that steals cryptocurrencies. The attack is due to the unprotected JSON-RPC endpoints existed in Ethereum nodes that could be exploited by attackers to transfer the Ether and ERC20 tokens to attackers-controlled accounts. This study aims to shed light on the attack, including malicious behaviors and profits of attackers. Specifically, we first designed and implemented a honeypot that could capture real attacks in the wild. We then deployed the honeypot and reported results of the collected data in a period of six months. In total, our system captured more than 308 million requests from 1,072 distinct IP addresses. We further grouped attackers into 36 groups with 59 distinct Ethereum accounts. Among them, attackers of 34 groups were stealing the Ether, while other 2 groups were targeting ERC20 tokens. The further behavior analysis showed that attackers were following a three-steps pattern to steal the Ether. Moreover, we observed an interesting type of transaction called zero gas transaction, which has been leveraged by attackers to steal ERC20 tokens. At last, we estimated the overall profits of attackers. To engage the whole community, the dataset of captured attacks is released on https://github.com/zjuicsr/eth-honey.
71 - Josh Payne , Ashish Kundu 2019
In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each systems logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.
89 - Liu Wang , Ren He , Haoyu Wang 2020
As the COVID-19 pandemic emerged in early 2020, a number of malicious actors have started capitalizing the topic. Although a few media reports mentioned the existence of coronavirus-themed mobile malware, the research community lacks the understanding of the landscape of the coronavirus-themed mobile malware. In this paper, we present the first systematic study of coronavirus-themed Android malware. We first make efforts to create a daily growing COVID-19 themed mobile app dataset, which contains 4,322 COVID-19 themed apk samples (2,500 unique apps) and 611 potential malware samples (370 unique malicious apps) by the time of mid-November, 2020. We then present an analysis of them from multiple perspectives including trends and statistics, installation methods, malicious behaviors and malicious actors behind them. We observe that the COVID-19 themed apps as well as malicious ones began to flourish almost as soon as the pandemic broke out worldwide. Most malicious apps are camouflaged as benign apps using the same app identifiers (e.g., app name, package name and app icon). Their main purposes are either stealing users private information or making profit by using tricks like phishing and extortion. Furthermore, only a quarter of the COVID-19 malware creators are habitual developers who have been active for a long time, while 75% of them are newcomers in this pandemic. The malicious developers are mainly located in US, mostly targeting countries including English-speaking countries, China, Arabic countries and Europe. To facilitate future research, we have publicly released all the well-labelled COVID-19 themed apps (and malware) to the research community. Till now, over 30 research institutes around the world have requested our dataset for COVID-19 themed research.
Malware is a piece of software that was written with the intent of doing harm to data, devices, or people. Since a number of new malware variants can be generated by reusing codes, malware attacks can be easily launched and thus become common in recent years, incurring huge losses in businesses, governments, financial institutes, health providers, etc. To defeat these attacks, malware classification is employed, which plays an essential role in anti-virus products. However, existing works that employ either static analysis or dynamic analysis have major weaknesses in complicated reverse engineering and time-consuming tasks. In this paper, we propose a visualized malware classification framework called VisMal, which provides highly efficient categorization with acceptable accuracy. VisMal converts malware samples into images and then applies a contrast-limited adaptive histogram equalization algorithm to enhance the similarity between malware image regions in the same family. We provided a proof-of-concept implementation and carried out an extensive evaluation to verify the performance of our framework. The evaluation results indicate that VisMal can classify a malware sample within 5.2ms and have an average accuracy of 96.0%. Moreover, VisMal provides security engineers with a simple visualization approach to further validate its performance.
This paper presents an experimental design and data analytics approach aimed at power-based malware detection on general-purpose computers. Leveraging the fact that malware executions must consume power, we explore the postulate that malware can be accurately detected via power data analytics. Our experimental design and implementation allow for programmatic collection of CPU power profiles for fixed tasks during uninfected and infected states using five different rootkits. To characterize the power consumption profiles, we use both simple statistical and novel, sophisticated features. We test a one-class anomaly detection ensemble (that baselines non-infected power profiles) and several kernel-based SVM classifiers (that train on both uninfected and infected profiles) in detecting previously unseen malware and clean profiles. The anomaly detection system exhibits perfect detection when using all features and tasks, with smaller false detection rate than the supervised classifiers. The primary contribution is the proof of concept that baselining power of fixed tasks can provide accurate detection of rootkits. Moreover, our treatment presents engineering hurdles needed for experimentation and allows analysis of each statistical feature individually. This work appears to be the first step towards a viable power-based detection capability for general-purpose computers, and presents next steps toward this goal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا