Large structure-dependent room temperature exchange bias in self-assembled BiFeO3 nanoparticles


Abstract in English

We studied the magnetic properties of self-assembled aggregates of BiFeO3 nanoparticles (~ 20-40 nm). The aggregates formed two different structures - one with limited and another with massive cross-linking - via `drying-mediated self-assembly process following dispersion of the nanoparticles within different organic solvents. They exhibit large coercivity H_C (>1000 Oe) and exchange bias field H_E (~ 350-900 Oe) in comparison to what is observed in isolated nanoparticles (H_C ~ 250 Oe; H_E ~ 0). The H_E turns out to be switching from negative to positive depending on the structure of the aggregates with |H_E| being larger. The magnetic force microscopy reveals the magnetic domains (extending across 7-10 nanoparticles) as well as the domain switching characteristics and corroborate the results of magnetic measurements. Numerical simulation of the `drying-mediated-self-assembly process shows that the nanoparticle-solvent interaction plays an important role in forming the `nanoparticle aggregate structures observed experimentally. Numerical simulation of the magnetic hysteresis loops, on the other hand, points out the importance of spin pinning at the surface of nanoparticles as a result of surface functionalization of the particles in different suspension media. Depending on the concentration of pinned spins at the surface pointing preferably along the easy-axis direction - from greater than 50% to less than 50% - H_E switches from negative to positive. Quite aside from bulk sample and isolated nanoparticle, nanoparticle aggregates - resulting from surface functionalization - therefore, offer remarkable tunability of properties depending on structures.

Download