Do you want to publish a course? Click here

An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps

73   0   0.0 ( 0 )
 Added by Ming Fan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named mytool, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on mytool, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.



rate research

Read More

Mobile apps provide various critical services, such as banking, communication, and healthcare. To this end, they have access to our personal information and have the ability to perform actions on our behalf. Hence, securing mobile apps is crucial to ensuring the privacy and safety of its users. Recent research efforts have focused on developing solutions to secure mobile ecosystems (i.e., app platforms, apps, and app stores), specifically in the context of detecting vulnerabilities in Android apps. Despite this attention, known vulnerabilities are often found in mobile apps, which can be exploited by malicious apps to harm the user. Further, fixing vulnerabilities after developing an app has downsides in terms of time, resources, user inconvenience, and information loss. In an attempt to address this concern, we have developed SeMA, a mobile app development methodology that builds on existing mobile app design artifacts such as storyboards. With SeMA, security is a first-class citizen in an apps design -- app designers and developers can collaborate to specify and reason about the security properties of an app at an abstract level without being distracted by implementation level details. Our realization of SeMA using Android Studio tooling demonstrates the methodology is complementary to existing design and development practices. An evaluation of the effectiveness of SeMA shows the methodology can detect and help prevent 49 vulnerabilities known to occur in Android apps. Further, a usability study of the methodology involving ten real-world developers shows the methodology is likely to reduce the development time and help developers uncover and prevent known vulnerabilities while designing apps.
Third-party security apps are an integral part of the Android app ecosystem. Many users install them as an extra layer of protection for their devices. There are hundreds of such security apps, both free and paid in Google Play Store and some of them are downloaded millions of times. By installing security apps, the smartphone users place a significant amount of trust towards the security companies who developed these apps, because a fully functional mobile security app requires access to many smartphone resources such as the storage, text messages and email, browser history, and information about other installed applications. Often these resources contain highly sensitive personal information. As such, it is essential to understand the mobile security apps ecosystem to assess whether is it indeed beneficial to install them. To this end, in this paper, we present the first empirical study of Android security apps. We analyse 100 Android security apps from multiple aspects such as metadata, static analysis, and dynamic analysis and presents insights to their operations and behaviours. Our results show that 20% of the security apps we studied potentially resell the data they collect from smartphones to third parties; in some cases, even without the user consent. Also, our experiments show that around 50% of the security apps fail to identify malware installed on a smartphone.
Validation of Android apps via testing is difficult owing to the presence of flaky tests. Due to non-deterministic execution environments, a sequence of events (a test) may lead to success or failure in unpredictable ways. In this work, we present an approach and tool FlakeShovel for detecting flaky tests through systematic exploration of event orders. Our key observation is that for a test in a mobile app, there is a testing framework thread which creates the test events, a main User-Interface (UI) thread processing these events, and there may be several other background threads running asynchronously. For any event e whose execution involves potential non-determinism, we localize the earliest (latest) event after (before) which e must happen.We then efficiently explore the schedules between the upper/lower bound events while grouping events within a single statement, to find whether the test outcome is flaky. We also create a suite of subject programs called DroidFlaker to study flaky tests in Android apps. Our experiments on subject-suite DroidFlaker demonstrate the efficacy of our flaky test detection. Our work is complementary to existing flaky test detection tools like Deflaker which check only failing tests. FlakeShovel can detect flaky tests among passing tests, as shown by our approach and experiments.
122 - Lingling Fan , Ting Su , Sen Chen 2018
Android, the #1 mobile app framework, enforces the single-GUI-thread model, in which a single UI thread manages GUI rendering and event dispatching. Due to this model, it is vital to avoid blocking the UI thread for responsiveness. One common practice is to offload long-running tasks into async threads. To achieve this, Android provides various async programming constructs, and leaves developers themselves to obey the rules implied by the model. However, as our study reveals, more than 25% apps violate these rules and introduce hard-to-detect, fail-stop errors, which we term as aysnc programming errors (APEs). To this end, this paper introduces APEChecker, a technique to automatically and efficiently manifest APEs. The key idea is to characterize APEs as specific fault patterns, and synergistically combine static analysis and dynamic UI exploration to detect and verify such errors. Among the 40 real-world Android apps, APEChecker unveils and processes 61 APEs, of which 51 are confirmed (83.6% hit rate). Specifically, APEChecker detects 3X more APEs than the state-of-art testing tools (Monkey, Sapienz and Stoat), and reduces testing time from half an hour to a few minutes. On a specific type of APEs, APEChecker confirms 5X more errors than the data race detection tool, EventRacer, with very few false alarms.
Mobile banking apps, belonging to the most security-critical app category, render massive and dynamic transactions susceptible to security risks. Given huge potential financial loss caused by vulnerabilities, existing research lacks a comprehensive empirical study on the security risks of global banking apps to provide useful insights and improve the security of banking apps. Since data-related weaknesses in banking apps are critical and may directly cause serious financial loss, this paper first revisits the state-of-the-art available tools and finds that they have limited capability in identifying data-related security weaknesses of banking apps. To complement the capability of existing tools in data-related weakness detection, we propose a three-phase automated security risk assessment system, named AUSERA, which leverages static program analysis techniques and sensitive keyword identification. By leveraging AUSERA, we collect 2,157 weaknesses in 693 real-world banking apps across 83 countries, which we use as a basis to conduct a comprehensive empirical study from different aspects, such as global distribution and weakness evolution during version updates. We find that apps owned by subsidiary banks are always less secure than or equivalent to those owned by parent banks. In addition, we also track the patching of weaknesses and receive much positive feedback from banking entities so as to improve the security of banking apps in practice. To date, we highlight that 21 banks have confirmed the weaknesses we reported. We also exchange insights with 7 banks, such as HSBC in UK and OCBC in Singapore, via in-person or online meetings to help them improve their apps. We hope that the insights developed in this paper will inform the communities about the gaps among multiple stakeholders, including banks, academic researchers, and third-party security companies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا