No Arabic abstract
By using a large highly obscured ($N_{rm H} > 10^{23} rm cm^{-2}$) AGN sample (294 sources at $z sim 0-5$) selected from detailed X-ray spectral analyses in the deepest Chandra surveys, we explore distributions of these X-ray sources in various optical/IR/X-ray color-color diagrams and their host-galaxy properties, aiming at characterizing the nuclear obscuration environment and the triggering mechanism of highly obscured AGNs. We find that the refined IRAC color-color diagram fails to identify the majority of X-ray selected highly obscured AGNs, even for the most luminous sources with ${rm log},L_{rm X}, rm (erg s^{-1}) > 44$. Over 80% of our sources will not be selected as heavily obscured candidates using the flux ratio of $f_{rm 24 mu m}, /,f_R > 1000$ and $R - K > 4.5$ criteria, implying complex origins and conditions for the obscuring materials that are responsible for the heavy X-ray obscuration. The average star formation rate of highly obscured AGNs is similar to that of stellar mass- ($M_*$-) and $z$-controlled normal galaxies, while the lack of quiescent hosts is observed for the former. Partial correlation analyses imply that highly obscured AGN activity (traced by $L_{rm X}$) appears to be more fundamentally related to $M_*$, and no dependence of $N_{rm H}$ on either $M_*$ or SFR is detected. Morphology analyses reveal that 61% of our sources have a significant disk component, while only 27% of them exhibit irregular morphological signatures. These findings together point toward a scenario where secular processes (e.g., galactic-disk instabilities), instead of mergers, are most probable to be the leading mechanism that triggers accretion activities of X-ray-selected highly obscured AGNs.
We present a detailed X-ray spectral analysis of 1152 AGNs selected in the Chandra Deep Fields (CDFs), in order to identify highly obscured AGNs ($N_{rm H} > 10^{23} rm cm^{-2}$). By fitting spectra with physical models, 436 (38%) sources with $L_{rm X} > 10^{42} rm erg s^{-1}$ are confirmed to be highly obscured, including 102 Compton-thick (CT) candidates. We propose a new hardness-ratio measure of the obscuration level which can be used to select highly obscured AGN candidates. The completeness and accuracy of applying this method to our AGNs are 88% and 80%, respectively. The observed logN-logS relation favors cosmic X-ray background models that predict moderate (i.e., between optimistic and pessimistic) CT number counts. 19% (6/31) of our highly obscured AGNs that have optical classifications are labeled as broad-line AGNs, suggesting that, at least for part of the AGN population, the heavy X-ray obscuration is largely a line-of-sight effect, i.e., some high-column-density clouds on various scales (but not necessarily a dust-enshrouded torus) along our sightline may obscure the compact X-ray emitter. After correcting for several observational biases, we obtain the intrinsic NH distribution and its evolution. The CT-to-highly-obscured fraction is roughly 52% and is consistent with no evident redshift evolution. We also perform long-term (~17 years in the observed frame) variability analyses for 31 sources with the largest number of counts available. Among them, 17 sources show flux variabilities: 31% (5/17) are caused by the change of NH, 53% (9/17) are caused by the intrinsic luminosity variability, 6% (1/17) are driven by both effects, and 2 are not classified due to large spectral fitting errors.
Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib). It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (U)LIRGs. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 {mu}m OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission do have fast and collimated outflows that can be seen in spectral lines at longer wavelengths. We conclude that the galaxy nuclei with the highest L(HCN-vib)/L(IR) do not drive wide-angle outflows detectable using the median velocities of far-infrared OH absorption lines. It is possible that this is due to an orientation effect where sources which are oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.
We examine the host morphologies of heavily obscured active galactic nuclei (AGN) at $zsim1$ to test whether obscured supermassive black hole growth at this epoch is preferentially linked to galaxy mergers. Our sample consists of 154 obscured AGN with $N_{rm H}>10^{23.5}$ cm$^{-2}$ and $z<1.5$. Using visual classifications, we compare the morphologies of these AGN to control samples of moderately obscured ($10^{22}$ cm$^{-2}$ $<N_{rm H}< 10^{23.5}$ cm$^{-2}$) and unobscured ($N_{rm H}<10^{22}$ cm$^{-2}$) AGN. These control AGN are matched in redshift and intrinsic X-ray luminosity to our heavily obscured AGN. We find that heavily obscured AGN at z~1 are twice as likely to be hosted by late-type galaxies relative to unobscured AGN ($65.3^{+4.1}_{-4.6}%$ vs $34.5^{+2.9}_{-2.7}%$) and three times as likely to exhibit merger or interaction signatures ($21.5^{+4.2}_{-3.3}%$ vs $7.8^{+1.9}_{-1.3}%$). The increased merger fraction is significant at the 3.8$sigma$ level. We also find that the incidence of point-like morphologies is inversely proportional to obscuration. If we exclude all point sources and consider only extended hosts, we find the correlation between merger fraction and obscuration is still evident, however at a reduced statistical significance ($2.5sigma$). The fact that we observe a different disk/spheroid fraction versus obscuration indicates that viewing angle cannot be the only thing differentiating our three AGN samples, as a simple unification model would suggest. The increased fraction of disturbed morphologies with obscuration supports an evolutionary scenario, in which Compton-thick AGN are a distinct phase of obscured SMBH growth following a merger/interaction event. Our findings also suggest that some of the merger-triggered SMBH growth predicted by recent AGN fueling models may be hidden among the heavily obscured, Compton-thick population.
Even in deep X-ray surveys, Compton-thick active galactic nuclei (CT AGNs, ${rm N_H} geqslant 1.5~times~10^{24}~{rm cm}^{-2}$) are difficult to be identified due to X-ray flux suppression and their complex spectral shape. However, the study of CT AGNs is vital for understanding the rapid growth of black holes and the origin of cosmic X-ray background. In the local universe, the fraction of CT AGNs accounts for 30% of the whole AGN population. We may expect a higher fraction of CT AGNs in deep X-ray surveys, however, only 10% of AGNs have been identified as CT AGNs in the 7 Ms textit{Chandra} Deep Field-South (CDFS) survey. In this work, we select 51 AGNs with abundant multi-wavelength data. Using the method of the mid-infrared (mid-IR) excess, we select hitherto unknown 8 CT AGN candidates in our sample. Seven of these candidates can confirm as CT AGN based on the multi-wavelength identification approach, and a new CT AGN (XID 133) is identified through the mid-IR diagnostics. We also discuss the X-ray origin of these eight CT AGNs and the reason why their column densities were underestimated in previous studies. We find that the multi-wavelength approaches of selecting CT AGNs are highly efficient, provided the high quality of observational data. We also find that CT AGNs have a higher Eddington ratio than non-CT AGNs, and that both CT AGNs and non-CT AGNs show similar properties of host galaxies.
Spitzer/IRS has revealed many sources with very deep Si features at 9.7micron (tau>1). We set out to investigate whether a strong Si absorption feature is a good indicator for the presence of a heavily obscured AGN. We compile X-ray spectroscopic observations available in the literature on the optically-thick,tau(9.7)>1 sources from the IRAS Seyfert sample. We find that the majority of the high-tau optically confirmed Seyferts (6/9) in this sample are probably CT. Thus we provide direct evidence for a connection between mid-IR optically-thick galaxies and CT AGN, with the success rate being close to 70% in the local Universe. This is at least comparable, if not better, than other rates obtained with photometric information in the mid to far-IR, or even mid-IR to Xray. However, this technique cannot provide complete CT AGN samples,ie there are many CT AGN which do not show significant Si absorption, with the most notable example being N1068. Having assessed the validity of the high 9.7micron technique locally, we attempt to construct a sample of candidate CT AGN at higher redshifts. We compile a sample of 7 high-tau sources in the GOODS and 5 in the Spitzer FLS. All these have been selected to have no PAH features EW(6.2)<0.3 in order to maximize the probability that they are AGN. 6 out of 7 sources in the GOODS have been detected in X-rays, while for the five FLS sources only X-ray flux upper limits are available. The high X-ray luminosities of the detected GOODS sources corroborates that these are AGN. For FLS, ancillary optical spectroscopy reveals hidden nuclei in two more sources. SED fitting can support the presence of an AGN in the vast majority of sources. We cannot derive useful X-ray spectroscopy constraints on whether these are CT. However, the low LX/L6 ratios, suggest that at least 4 out of the 6 detected sources in GOODS may be associated with CT AGN.