Particle Production in AgAg Collisions at $E_{rm Kin}=1.58A$ GeV within a Hadronic Transport Approach


Abstract in English

Heavy-ion collisions at low beam energies explore the high density regime of strongly-interacting matter. The dynamical evolution of these collisions can be successfully described by hadronic transport approaches. In March 2019, the HADES collaboration has taken data for AgAg collisions at $E_{rm Kin}=1.58A$ GeV and in this work, we provide predictions for particle production and spectra within the Simulating Many Accelerated Strongly-interacting Hadrons (SMASH) approach. The multiplicities and spectra of strange and non-strange particles follow the expected trends as a function of system size. In particular, in AuAu collisions, much higher yields of double-strange baryons were observed experimentally than expected from a thermal model. Therefore, we incorporate a previously suggested mechanism to produce $Xi$ baryons via rare decays of high mass $N^*$ resonances and predict the multiplicities. In addition, we predict the invariant mass spectrum for dilepton emission and explore the most important sources of dileptons above 1 GeV, that are expected to indicate the temperature of the medium. Interestingly, the overall dilepton emission is very similar to the one in AuAu collisions at $1.23 A$ GeV, a hint that the smaller system at a higher energy behaves very similar to the larger system at lower beam energy.

Download