Do you want to publish a course? Click here

Kinetics of the lattice response to hydrogen absorption in thin Pd and CoPd films

119   0   0.0 ( 0 )
 Added by Alexander Gerber
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrogen can penetrate reversibly a number of metals, occupy the interstitial sites and cause large expansion of the crystal lattice. The question discussed here is whether the kinetics of the structural response matches hydrogen absorption. We show that thin Pd and CoPd films exposed to a relatively rich hydrogen atmosphere (4% H2) inflate irreversibly, demonstrate the controllable shape memory, and duration of the process can be orders of magnitude longer than hydrogen absorption. The dynamics of the out-of-equilibrium plastic creep is well described by the Avrami - type model of the nucleation and lateral domain wall expansion of the swelled sites.



rate research

Read More

144 - J. Y. Jo , H. S. Han , J.-G. Yoon 2007
We investigated domain kinetics by measuring the polarization switching behaviors of polycrystalline Pb(Zr,Ti)O$_{3}$ films, which are widely used in ferroelectric memory devices. Their switching behaviors at various electric fields and temperatures could be explained by assuming the Lorentzian distribution of domain switching times. We viewed the switching process under an electric field as a motion of the ferroelectric domain through a random medium, and we showed that the local field variation due to dipole defects at domain pinning sites could explain the intriguing distribution.
72 - Jorge Iniguez 2006
We report a first-principles study of the energetics of hydrogen absorption and desorption (i.e. H-vacancy formation) on pure and Ti-doped sodium alanate (NaAlH4) surfaces. We find that the Ti atom facilitates the dissociation of H2 molecules as well as the adsorption of H atoms. In addition, the dopant makes it energetically more favorable to creat H vacancies by saturating Al dangling bonds. Interestingly, our results show that the Ti dopant brings close in energy all the steps presumably involved in the absorption and desorption of hydrogen, thus facilitating both and enhancing the reaction kinetics of the alanates. We also discuss the possibility of using other light transition metals (Sc, V, and Cr) as dopants.
99 - G.A. Rizzi 2004
We have measured the transformation of pseudomorphic Ni films on Pd(100) into their bulk fcc phase as a function of the film thickness. We made use of x-ray diffraction and x-ray induced photoemission to study the evolution of the Ni film and its interface with the substrate. The growth of a pseudomorphic film with tetragonally strained face centered symmetry (fct) has been observed by out-of-plane x-ray diffraction up to a maximum thickness of 10 Ni layers (two of them intermixed with the substrate), where a new fcc bulk-like phase is formed. After the formation of the bulk-like Ni domains, we observed the pseudomorphic fct domains to disappear preserving the number of layers and their spacing. The phase transition thus proceeds via lateral growth of the bulk-like phase within the pseudomorphic one, i.e. the bulk-like fcc domains penetrate down to the substrate when formed. This large depth of the walls separating the domains of different phases is also indicated by the strong increase of the intermixing at the substrate-film interface, which starts at the onset of the transition and continues at even larger thickness. The bulk-like fcc phase is also slightly strained; its relaxation towards the orthomorphic lattice structure proceeds slowly with the film thickness, being not yet completed at the maximum thickness presently studied of 30 Angstrom (i.e. about 17 layers).
The effects of hydrogen (H2) and deuterium (D2) absorption were studied in two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using polarized neutron reflectivity (PNR). PNR was measured in an external magnetic field H applied in the plane of the sample with the magnetization M confined in the plane for {mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal thicknesses of the Co and Pd layers were 2.5 {AA} and 21 {AA}, respectively. Because of these small values, the actual layer chemical composition, thickness, and interface roughness parameters were determined from the nuclear scattering length density profile ({rho}_n) and its derivative obtained from both x-ray reflectivity and PNR, and uncertainties were determined using Monte Carlo analysis. The PNR {rho}_n showed that although D2 absorption occurred throughout the samples, absorption in the multilayer stack was modest (0.02 D per Pd atom) and thus did not expand. Direct magnetometry showed that H2 absorption decreased the total M at saturation and increased the component of M in the plane of the sample when not at saturation. The PNR magnetic scattering length density ({rho}_m) revealed that the Pd layers in the multilayer stack were magnetized and that their magnetization was preferentially modified upon D2 absorption. In one sample, a modulation of M with twice the multilayer period was observed at {mu}_o H= 0.65 T, which increased upon D2 absorption. These results indicate that H2 or D2 absorption decreases both the PMA and total magnetization of the samples. The lack of measurable expansion during absorption indicates that these changes are primarily governed by modification of the electronic structure of the material.
102 - S. S. Das , G. Kopnov , A. Gerber 2018
Effect of hydrogen adsorption on the extraordinary Hall phenomenon (EHE) in ferromagnetic CoPd films is studied as a function of composition, thickness, substrate and hydrogen concentration in atmosphere. Adsorption of hydrogen adds a positive term in the extraordinary Hall effect coefficient and modifies the perpendicular magnetic anisotropy with the respective changes in coercivity and remanence of hysteresis loops. Hydrogen sensitive compositions are within the Co concentration range 20% < x < 50% with the strongest response near the EHE polarity reversal point x_0 ~ 38%. Depending on the film composition and field of operation the EHE response of CoPd to low concentration hydrogen can reach hundreds percent, which makes the method and the material attractive for hydrogen sensing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا