Do you want to publish a course? Click here

Network Architecture Search for Domain Adaptation

95   0   0.0 ( 0 )
 Added by Xingchao Peng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep networks have been used to learn transferable representations for domain adaptation. Existing deep domain adaptation methods systematically employ popular hand-crafted networks designed specifically for image-classification tasks, leading to sub-optimal domain adaptation performance. In this paper, we present Neural Architecture Search for Domain Adaptation (NASDA), a principle framework that leverages differentiable neural architecture search to derive the optimal network architecture for domain adaptation task. NASDA is designed with two novel training strategies: neural architecture search with multi-kernel Maximum Mean Discrepancy to derive the optimal architecture, and adversarial training between a feature generator and a batch of classifiers to consolidate the feature generator. We demonstrate experimentally that NASDA leads to state-of-the-art performance on several domain adaptation benchmarks.



rate research

Read More

In Domain Adaptation (DA), where the feature distributions of the source and target domains are different, various distance-based methods have been proposed to minimize the discrepancy between the source and target domains to handle the domain shift. In this paper, we propose a new similarity function, which is called Population Correlation (PC), to measure the domain discrepancy for DA. Base on the PC function, we propose a new method called Domain Adaptation by Maximizing Population Correlation (DAMPC) to learn a domain-invariant feature representation for DA. Moreover, most existing DA methods use hand-crafted bottleneck networks, which may limit the capacity and flexibility of the corresponding model. Therefore, we further propose a method called DAMPC with Neural Architecture Search (DAMPC-NAS) to search the optimal network architecture for DAMPC. Experiments on several benchmark datasets, including Office-31, Office-Home, and VisDA-2017, show that the proposed DAMPC-NAS method achieves better results than state-of-the-art DA methods.
102 - Han Sun , Lei Lin , Ningzhong Liu 2021
Recently, in order to address the unsupervised domain adaptation (UDA) problem, extensive studies have been proposed to achieve transferrable models. Among them, the most prevalent method is adversarial domain adaptation, which can shorten the distance between the source domain and the target domain. Although adversarial learning is very effective, it still leads to the instability of the network and the drawbacks of confusing category information. In this paper, we propose a Robust Ensembling Network (REN) for UDA, which applies a robust time ensembling teacher network to learn global information for domain transfer. Specifically, REN mainly includes a teacher network and a student network, which performs standard domain adaptation training and updates weights of the teacher network. In addition, we also propose a dual-network conditional adversarial loss to improve the ability of the discriminator. Finally, for the purpose of improving the basic ability of the student network, we utilize the consistency constraint to balance the error between the student network and the teacher network. Extensive experimental results on several UDA datasets have demonstrated the effectiveness of our model by comparing with other state-of-the-art UDA algorithms.
Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, and semantic segmentation, which aims to alleviate performance degradation caused by domain-shift. Most of previous methods rely on a single-mode distribution of source and target domains to align them with adversarial learning, leading to inferior results in various scenarios. To that end, in this paper, we design a new spatial attention pyramid network for unsupervised domain adaptation. Specifically, we first build the spatial pyramid representation to capture context information of objects at different scales. Guided by the task-specific information, we combine the dense global structure representation and local texture patterns at each spatial location effectively using the spatial attention mechanism. In this way, the network is enforced to focus on the discriminative regions with context information for domain adaption. We conduct extensive experiments on various challenging datasets for unsupervised domain adaptation on object detection, instance segmentation, and semantic segmentation, which demonstrates that our method performs favorably against the state-of-the-art methods by a large margin. Our source code is available at https://isrc.iscas.ac.cn/gitlab/research/domain-adaption.
101 - Kuniaki Saito , Kate Saenko 2021
Universal Domain Adaptation (UNDA) aims to handle both domain-shift and category-shift between two datasets, where the main challenge is to transfer knowledge while rejecting unknown classes which are absent in the labeled source data but present in the unlabeled target data. Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples, but this strategy is not practical. In this paper, we propose a method to learn the threshold using source samples and to adapt it to the target domain. Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target. To learn the inter-and intra-class distance, we propose to train a one-vs-all classifier for each class using labeled source data. Then, we adapt the open-set classifier to the target domain by minimizing class entropy. The resulting framework is the simplest of all baselines of UNDA and is insensitive to the value of a hyper-parameter yet outperforms baselines with a large margin.
Network architectures obtained by Neural Architecture Search (NAS) have shown state-of-the-art performance in various computer vision tasks. Despite the exciting progress, the computational complexity of the forward-backward propagation and the search process makes it difficult to apply NAS in practice. In particular, most previous methods require thousands of GPU days for the search process to converge. In this paper, we propose a dynamic distribution pruning method towards extremely efficient NAS, which samples architectures from a joint categorical distribution. The search space is dynamically pruned every a few epochs to update this distribution, and the optimal neural architecture is obtained when there is only one structure remained. We conduct experiments on two widely-used datasets in NAS. On CIFAR-10, the optimal structure obtained by our method achieves the state-of-the-art $1.9$% test error, while the search process is more than $1,000$ times faster (only $1.5$ GPU hours on a Tesla V100) than the state-of-the-art NAS algorithms. On ImageNet, our model achieves 75.2% top-1 accuracy under the MobileNet settings, with a time cost of only $2$ GPU days that is $100%$ acceleration over the fastest NAS algorithm. The code is available at url{ https://github.com/tanglang96/DDPNAS}
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا