No Arabic abstract
This is a long-overdue companion paper to arXiv:1512.00073. We study the relation between $sl(3|2)$ Chern-Simons supergravity on AdS$_3$ and two-dimensional CFTs with $mathcal{N}=2$ super-$mathcal{W}_3$ symmetry. Specifically, we carry out a complete analysis of asymptotic symmetries in a basis that makes the superconformal structure transparent, allowing us to establish the precise dictionary between currents and transformation parameters in the bulk and their boundary counterparts. We also discuss the incorporation of sources and display in full detail the corresponding holographic Ward identities. By imposing suitable hermiticity conditions on the CFT currents, we identify the superalgebra $su(2,1|1,1)$ as the appropriate real form of $sl(3|2)$ in Lorentzian signature. We take the opportunity to review some of the properties of the $mathcal{N}=2$ super-$mathcal{W}_3$ conformal algebra, including its multiplet structure, OPEs and spectral flow invariance, correcting some minor typos present in the literature.
We study two-point functions of single-trace half-BPS operators in the presence of a supersymmetric Wilson line in $mathcal{N}=4$ SYM. We use inversion formula technology in order to reconstruct the CFT data starting from a single discontinuity of the correlator. In the planar strong coupling limit only a finite number of conformal blocks contributes to the discontinuity, which allows us to obtain elegant closed-form expressions for two-point functions of single-trace operators $mathcal{O}_J$ of weight $J=2,3,4$. Our final result passes a number of non-trivial consistency checks: it has the correct discontinuity, it satisfies the superconformal Ward identities, it has a sensible expansion in both defect and bulk OPEs, and is consistent with available results coming from localization. The method is completely algorithmic and can be implemented to calculate correlators of arbitrary weight.
We find a formulation of $mathcal{N}=2$ supersymmetric Yang-Mills theory in Projective superspace. In particular we find an expression for the field strength in terms of an unconstrained prepotential which is desirable when quantizing the theory. We use this to write the action in terms of the prepotential and show that it reduces to the known result in the abelian limit.
We carry out a systematic study of 4d $mathcal{N} = 2$ preserving S-folds of F-theory 7-branes and the worldvolume theories on D3-branes probing them. They consist of two infinite series of theories, which we denote following the original papers by $mathcal{S}^{(r)}_{G,ell}$ for $ell = 2,3,4$ and $mathcal{T}^{(r)}_{G,ell}$ for $ell = 2,3,4,5,6$. Their distinction lies in the discrete torsion carried by the S-fold and in the difference in the asymptotic holonomy of the gauge bundle on the 7-brane. We study various properties of these theories, using diverse field theoretical and string theoretical methods.
We explore large-$N$ symmetric orbifolds of the $mathcal N=2$ minimal models, and find evidence that their moduli spaces each contain a supergravity point. We identify single-trace exactly marginal operators that deform them away from the symmetric orbifold locus. We also show that their elliptic genera exhibit slow growth consistent with supergravity spectra in AdS$_3$. We thus propose an infinite family of new holographic CFTs.
We propose a generalization of S-folds to 4d $mathcal{N}=2$ theories. This construction is motivated by the classification of rank one 4d $mathcal{N}=2$ super-conformal field theories (SCFTs), which we reproduce from D3-branes probing a configuration of $mathcal{N}=2$ S-folds combined with 7-branes. The main advantage of this point of view is that realizes both Coulomb and Higgs branch flows and allows for a straight forward generalization to higher rank theories.