Vanadium Abundance Derivations in 255 Metal-poor Stars


Abstract in English

We present vanadium (V) abundances for 255 metal-poor stars, derived from high-resolution optical spectra from the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coud{e} Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We use updated V I and V II atomic transition data from recent laboratory studies, and we increase the number of lines examined (from 1 to 4 lines of V I, and from 2 to 7 lines of V II). As a result, we reduce the V abundance uncertainties for most stars by more than 20% and expand the number of stars with V detections from 204 to 255. In the metallicity range $-$4.0 $<$ [Fe/H] $< -$1.0, we calculate the mean ratios [V I/Fe I]$ = -0.10 pm 0.01 (sigma = 0.16)$ from 128 stars with $geq$ 2 V I lines detected, [V II/Fe II] $= +0.13 pm 0.01 (sigma = 0.16)$ from 220 stars with $geq$ 2 V II lines detected, and [V II/V I] $= +0.25 pm 0.01 (sigma = 0.15)$ from 119 stars. We suspect this offset is due to non-LTE effects, and we recommend using [V II/Fe II], which is enhanced relative to the solar ratio, as a better representation of [V/Fe]. We provide more extensive evidence for abundance correlations detected previously among scandium, titanium, and vanadium, and we identify no systematic effects in the analysis that can explain these correlations.

Download