Do you want to publish a course? Click here

Rethinking of the Image Salient Object Detection: Object-level Semantic Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter

88   0   0.0 ( 0 )
 Added by Chenglizhao Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The real human attention is an interactive activity between our visual system and our brain, using both low-level visual stimulus and high-level semantic information. Previous image salient object detection (SOD) works conduct their saliency predictions in a multi-task manner, i.e., performing pixel-wise saliency regression and segmentation-like saliency refinement at the same time, which degenerates their feature backbones in revealing semantic information. However, given an image, we tend to pay more attention to those regions which are semantically salient even in the case that these regions are perceptually not the most salient ones at first glance. In this paper, we divide the SOD problem into two sequential tasks: 1) we propose a lightweight, weakly supervised deep network to coarsely locate those semantically salient regions first; 2) then, as a post-processing procedure, we selectively fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement. In sharp contrast to the state-of-the-art (SOTA) methods that focus on learning pixel-wise saliency in single image using perceptual clues mainly, our method has investigated the object-level semantic ranks between multiple images, of which the methodology is more consistent with the real human attention mechanism. Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.



rate research

Read More

Salient object detection aims at detecting the most visually distinct objects and producing the corresponding masks. As the cost of pixel-level annotations is high, image tags are usually used as weak supervisions. However, an image tag can only be used to annotate one class of objects. In this paper, we introduce saliency subitizing as the weak supervision since it is class-agnostic. This allows the supervision to be aligned with the property of saliency detection, where the salient objects of an image could be from more than one class. To this end, we propose a model with two modules, Saliency Subitizing Module (SSM) and Saliency Updating Module (SUM). While SSM learns to generate the initial saliency masks using the subitizing information, without the need for any unsupervised methods or some random seeds, SUM helps iteratively refine the generated saliency masks. We conduct extensive experiments on five benchmark datasets. The experimental results show that our method outperforms other weakly-supervised methods and even performs comparably to some fully-supervised methods.
The existing still-static deep learning based saliency researches do not consider the weighting and highlighting of extracted features from different layers, all features contribute equally to the final saliency decision-making. Such methods always evenly detect all potentially significant regions and unable to highlight the key salient object, resulting in detection failure of dynamic scenes. In this paper, based on the fact that salient areas in videos are relatively small and concentrated, we propose a textbf{key salient object re-augmentation method (KSORA) using top-down semantic knowledge and bottom-up feature guidance} to improve detection accuracy in video scenes. KSORA includes two sub-modules (WFE and KOS): WFE processes local salient feature selection using bottom-up strategy, while KOS ranks each object in global fashion by top-down statistical knowledge, and chooses the most critical object area for local enhancement. The proposed KSORA can not only strengthen the saliency value of the local key salient object but also ensure global saliency consistency. Results on three benchmark datasets suggest that our model has the capability of improving the detection accuracy on complex scenes. The significant performance of KSORA, with a speed of 17FPS on modern GPUs, has been verified by comparisons with other ten state-of-the-art algorithms.
Contour information plays a vital role in salient object detection. However, excessive false positives remain in predictions from existing contour-based models due to insufficient contour-saliency fusion. In this work, we designed a network for better edge quality in salient object detection. We proposed a contour-saliency blending module to exchange information between contour and saliency. We adopted recursive CNN to increase contour-saliency fusion while keeping the total trainable parameters the same. Furthermore, we designed a stage-wise feature extraction module to help the model pick up the most helpful features from previous intermediate saliency predictions. Besides, we proposed two new loss functions, namely Dual Confinement Loss and Confidence Loss, for our model to generate better boundary predictions. Evaluation results on five common benchmark datasets reveal that our model achieves competitive state-of-the-art performance.
Sparse labels have been attracting much attention in recent years. However, the performance gap between weakly supervised and fully supervised salient object detection methods is huge, and most previous weakly supervised works adopt complex training methods with many bells and whistles. In this work, we propose a one-round end-to-end training approach for weakly supervised salient object detection via scribble annotations without pre/post-processing operations or extra supervision data. Since scribble labels fail to offer detailed salient regions, we propose a local coherence loss to propagate the labels to unlabeled regions based on image features and pixel distance, so as to predict integral salient regions with complete object structures. We design a saliency structure consistency loss as self-consistent mechanism to ensure consistent saliency maps are predicted with different scales of the same image as input, which could be viewed as a regularization technique to enhance the model generalization ability. Additionally, we design an aggregation module (AGGM) to better integrate high-level features, low-level features and global context information for the decoder to aggregate various information. Extensive experiments show that our method achieves a new state-of-the-art performance on six benchmarks (e.g. for the ECSSD dataset: F_beta = 0.8995, E_xi = 0.9079 and MAE = 0.0489$), with an average gain of 4.60% for F-measure, 2.05% for E-measure and 1.88% for MAE over the previous best method on this task. Source code is available at http://github.com/siyueyu/SCWSSOD.
Object proposals greatly benefit object detection task in recent state-of-the-art works. However, the existing object proposals usually have low localization accuracy at high intersection over union threshold. To address it, we apply saliency detection to each bounding box to improve their quality in this paper. We first present a geodesic saliency detection method in contour, which is designed to find closed contours. Then, we apply it to each candidate box with multi-sizes, and refined boxes can be easily produced in the obtained saliency maps which are further used to calculate saliency scores for proposal ranking. Experiments on PASCAL VOC 2007 test dataset demonstrate the proposed refinement approach can greatly improve existing models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا