No Arabic abstract
Neural network-based approaches have become the driven forces for Natural Language Processing (NLP) tasks. Conventionally, there are two mainstream neural architectures for NLP tasks: the recurrent neural network (RNN) and the convolution neural network (ConvNet). RNNs are good at modeling long-term dependencies over input texts, but preclude parallel computation. ConvNets do not have memory capability and it has to model sequential data as un-ordered features. Therefore, ConvNets fail to learn sequential dependencies over the input texts, but it is able to carry out high-efficient parallel computation. As each neural architecture, such as RNN and ConvNets, has its own pro and con, integration of different architectures is assumed to be able to enrich the semantic representation of texts, thus enhance the performance of NLP tasks. However, few investigation explores the reconciliation of these seemingly incompatible architectures. To address this issue, we propose a hybrid architecture based on a novel hierarchical multi-granularity attention mechanism, named Multi-granularity Attention-based Hybrid Neural Network (MahNN). The attention mechanism is to assign different weights to different parts of the input sequence to increase the computation efficiency and performance of neural models. In MahNN, two types of attentions are introduced: the syntactical attention and the semantical attention. The syntactical attention computes the importance of the syntactic elements (such as words or sentence) at the lower symbolic level and the semantical attention is used to compute the importance of the embedded space dimension corresponding to the upper latent semantics. We adopt the text classification as an exemplifying way to illustrate the ability of MahNN to understand texts.
Hierarchical multi-label text classification (HMTC) has been gaining popularity in recent years thanks to its applicability to a plethora of real-world applications. The existing HMTC algorithms largely focus on the design of classifiers, such as the local, global, or a combination of them. However, very few studies have focused on hierarchical feature extraction and explore the association between the hierarchical labels and the text. In this paper, we propose a Label-based Attention for Hierarchical Mutlti-label Text Classification Neural Network (LA-HCN), where the novel label-based attention module is designed to hierarchically extract important information from the text based on the labels from different hierarchy levels. Besides, hierarchical information is shared across levels while preserving the hierarchical label-based information. Separate local and global document embeddings are obtained and used to facilitate the respective local and global classifications. In our experiments, LA-HCN outperforms other state-of-the-art neural network-based HMTC algorithms on four public HMTC datasets. The ablation study also demonstrates the effectiveness of the proposed label-based attention module as well as the novel local and global embeddings and classifications. By visualizing the learned attention (words), we find that LA-HCN is able to extract meaningful information corresponding to the different labels which provides explainability that may be helpful for the human analyst.
In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguistic perspective and the analysis of pre-trained Transformer (BERT) on a huge corpus, we further design a strategy to control the scale distribution for each layer. Results of three different kinds of tasks (21 datasets) show our Multi-Scale Transformer outperforms the standard Transformer consistently and significantly on small and moderate size datasets.
Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with the practical problems of fixed corpus level graph structure which do not support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.
In the area of geographic information processing. There are few researches on geographic text classification. However, the application of this task in Chinese is relatively rare. In our work, we intend to implement a method to extract text containing geographical entities from a large number of network text. The geographic information in these texts is of great practical significance to transportation, urban and rural planning, disaster relief and other fields. We use the method of graph convolutional neural network with attention mechanism to achieve this function. Graph attention networks is an improvement of graph convolutional neural networks. Compared with GCN, the advantage of GAT is that the attention mechanism is proposed to weight the sum of the characteristics of adjacent nodes. In addition, We construct a Chinese dataset containing geographical classification from multiple datasets of Chinese text classification. The Macro-F Score of the geoGAT we used reached 95% on the new Chinese dataset.
Recently, the attention-enhanced multi-layer encoder, such as Transformer, has been extensively studied in Machine Reading Comprehension (MRC). To predict the answer, it is common practice to employ a predictor to draw information only from the final encoder layer which generates the textit{coarse-grained} representations of the source sequences, i.e., passage and question. Previous studies have shown that the representation of source sequence becomes more textit{coarse-grained} from textit{fine-grained} as the encoding layer increases. It is generally believed that with the growing number of layers in deep neural networks, the encoding process will gather relevant information for each location increasingly, resulting in more textit{coarse-grained} representations, which adds the likelihood of similarity to other locations (referring to homogeneity). Such a phenomenon will mislead the model to make wrong judgments so as to degrade the performance. To this end, we propose a novel approach called Adaptive Bidirectional Attention, which adaptively exploits the source representations of different levels to the predictor. Experimental results on the benchmark dataset, SQuAD 2.0 demonstrate the effectiveness of our approach, and the results are better than the previous state-of-the-art model by 2.5$%$ EM and 2.3$%$ F1 scores.