Do you want to publish a course? Click here

Shape Coexistence at Zero Spin in 64Ni Driven by the Monopole Tensor Interaction

96   0   0.0 ( 0 )
 Added by Silvia Leoni
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The low-spin structure of the semimagic 64Ni nucleus has been considerably expanded: combining four experiments, several 0+ and 2+ excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0+ excitation is located at a surprisingly high energy (3463 keV), with a collective 2+ state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N = 40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N.



rate research

Read More

The high-spin states in 153Ho, have been studied by 139 57 La(20Ne, 6n) reaction at a projectile energy of 139 MeV at Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of Indian National Gamma Array (INGA) setup. Data from gamma-gamma coincidence, directional correlation and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-gamma time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.
The quadrupole collectivity of low-lying states and the anomalous behavior of the $0^+_2$ and $2^+_3$ levels in $^{72}$Ge are investigated via projectile multi-step Coulomb excitation with GRETINA and CHICO-2. A total of forty six $E2$ and $M1$ matrix elements connecting fourteen low-lying levels were determined using the least-squares search code, gosia. Evidence for triaxiality and shape coexistence, based on the model-independent shape invariants deduced from the Kumar-Cline sum rule, is presented. These are interpreted using a simple two-state mixing model as well as multistate mixing calculations carried out within the framework of the triaxial rotor model. The results represent a significant milestone towards the understanding of the unusual structure of this nucleus.
Shape coexistence in the $Z approx 82$ region has been established in mercury, lead and polonium isotopes. Even-even mercury isotopes with $100 leq N leq 106$ present multiple fingerprints of this phenomenon, which seems to be no longer present for $N geq 110$. According to a number of theoretical calculations, shape coexistence is predicted in the $^{188}$Hg isotope. The $^{188}$Hg nucleus was populated using two different fusion-evaporation reactions with two targets, $^{158}$Gd and $^{160}$Gd, and a beam of $^{34}$S, provided by the Tandem-ALPI accelerators complex at the Laboratori Nazionali di Legnaro. The channels of interest were selected using the information from the Neutron Wall array, while the $gamma$ rays were detected using the GALILEO $gamma$-ray array. The lifetimes of the excited states were determined using the Recoil Distance Doppler-Shift method, employing the dedicated GALILEO plunger device. Using the two-bands mixing and rotational models, the deformation of the pure configurations was obtained from the experimental results. The extracted transition strengths were compared with those calculated with the state-of-the-art symmetry-conserving configuration-mixing (SCCM) and five-dimentional collective Hamiltonian (5DCH) approaches in order to shed light on the nature of the observed structures in the $^{188}$Hg nucleus. An oblate, a normal- and a super-deformed prolate bands were predicted and their underlying shell structure was also discussed.
Four previously known rotational bands in 76Rb have been extended to moderate spins using the Gammasphere and Microball gamma ray and charged particle detector arrays and the 40Ca(40Ca,3pn) reaction at a beam energy of 165 MeV. The properties of two of the negative-parity bands can only readily be interpreted in terms of the highly successful Cranked Nilsson-Strutinsky model calculations if they have the same configuration in terms of the number of g9/2 particles, but they result from different nuclear shapes (one near-oblate and the other near-prolate). These data appear to constitute a unique example of shape co-existing structures at medium spins.
The low energy excited $0_{2,3}^+$ states in $^{96}$Sr are amongst the most prominent examples of shape coexistence across the nuclear landscape. In this work, the neutron $[2s_{1/2}]^2$ content of the $0_{1,2,3}^+$ states in $^{96}$Sr was determined by means of the d($^{95}$Sr,p) transfer reaction at the TRIUMF-ISAC2 facility using the SHARC and TIGRESS arrays. Spectroscopic factors of 0.19(3) and 0.22(3) were extracted for the $^{96}$Sr ground and 1229~keV $0^+$ states, respectively, by fitting the experimental angular distributions to DWBA reaction model calculations. A detailed analysis of the $gamma$-decay of the isomeric $0_3^+$ state was used to determine a spectroscopic factor of 0.33(13). The experimental results are compared to shell model calculations, which predict negligible spectroscopic strength for the excited $0^+$ states in $^{96}$Sr. The strengths of the excited $0_{2,3}^+$ states were also analyzed within a two-level mixing model and are consistent with a mixing strength of $a^2$=0.40(14) and a difference in intrinsic deformations of $|Delta beta|=0.31(3)$. These results suggest coexistence of three different configurations in $^{96}$Sr and strong shape mixing of the two excited $0^+$ states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا