Do you want to publish a course? Click here

Scalable and Communication-efficient Decentralized Federated Edge Learning with Multi-blockchain Framework

302   0   0.0 ( 0 )
 Added by Jiawen Kang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The emerging Federated Edge Learning (FEL) technique has drawn considerable attention, which not only ensures good machine learning performance but also solves data island problems caused by data privacy concerns. However, large-scale FEL still faces following crucial challenges: (i) there lacks a secure and communication-efficient model training scheme for FEL; (2) there is no scalable and flexible FEL framework for updating local models and global model sharing (trading) management. To bridge the gaps, we first propose a blockchain-empowered secure FEL system with a hierarchical blockchain framework consisting of a main chain and subchains. This framework can achieve scalable and flexible decentralized FEL by individually manage local model updates or model sharing records for performance isolation. A Proof-of-Verifying consensus scheme is then designed to remove low-quality model updates and manage qualified model updates in a decentralized and secure manner, thereby achieving secure FEL. To improve communication efficiency of the blockchain-empowered FEL, a gradient compression scheme is designed to generate sparse but important gradients to reduce communication overhead without compromising accuracy, and also further strengthen privacy preservation of training data. The security analysis and numerical results indicate that the proposed schemes can achieve secure, scalable, and communication-efficient decentralized FEL.



rate research

Read More

Mobile edge computing (MEC) has been envisioned as a promising paradigm to handle the massive volume of data generated from ubiquitous mobile devices for enabling intelligent services with the help of artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training in a single entity, e.g., an MEC server, which is now becoming a weak point due to data privacy concerns and high data communication overheads. In this context, federated learning (FL) has been proposed to provide collaborative data training solutions, by coordinating multiple mobile devices to train a shared AI model without exposing their data, which enjoys considerable privacy enhancement. To improve the security and scalability of FL implementation, blockchain as a ledger technology is attractive for realizing decentralized FL training without the need for any central server. Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain, which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems. This article presents an overview of the fundamental concepts and explores the opportunities of FLchain in MEC networks. We identify several main topics in FLchain design, including communication cost, resource allocation, incentive mechanism, security and privacy protection. The key solutions for FLchain design are provided, and the lessons learned as well as the outlooks are also discussed. Then, we investigate the applications of FLchain in popular MEC domains, such as edge data sharing, edge content caching and edge crowdsensing. Finally, important research challenges and future directions are also highlighted.
357 - Shuo Yuan , Bin Cao , Yao Sun 2021
Federated learning (FL) has emerged as a promising master/slave learning paradigm to alleviate systemic privacy risks and communication costs incurred by cloud-centric machine learning methods. However, it is very challenging to resist the single point of failure of the master aggregator and attacks from malicious participants while guaranteeing model convergence speed and accuracy. Recently, blockchain has been brought into FL systems transforming the paradigm to a decentralized manner thus further improve the system security and learning reliability. Unfortunately, the traditional consensus mechanism and architecture of blockchain systems can hardly handle the large-scale FL task due to the huge resource consumption, limited transaction throughput, and high communication complexity. To address these issues, this paper proposes a two-layer blockchaindriven FL framework, called as ChainsFL, which is composed of multiple subchain networks (subchain layer) and a direct acyclic graph (DAG)-based mainchain (mainchain layer). In ChainsFL, the subchain layer limits the scale of each shard for a small range of information exchange, and the mainchain layer allows each shard to share and validate the learning model in parallel and asynchronously to improve the efficiency of cross-shard validation. Furthermore, the FL procedure is customized to deeply integrate with blockchain technology, and the modified DAG consensus mechanism is proposed to mitigate the distortion caused by abnormal models. In order to provide a proof-ofconcept implementation and evaluation, multiple subchains base on Hyperledger Fabric are deployed as the subchain layer, and the self-developed DAG-based mainchain is deployed as the mainchain layer. The experimental results show that ChainsFL provides acceptable and sometimes better training efficiency and stronger robustness compared with the typical existing FL systems.
138 - Xiaopeng Mo , Jie Xu 2020
This paper studies a federated edge learning system, in which an edge server coordinates a set of edge devices to train a shared machine learning model based on their locally distributed data samples. During the distributed training, we exploit the joint communication and computation design for improving the system energy efficiency, in which both the communication resource allocation for global ML parameters aggregation and the computation resource allocation for locally updating MLparameters are jointly optimized. In particular, we consider two transmission protocols for edge devices to upload ML parameters to edge server, based on the non orthogonal multiple access and time division multiple access, respectively. Under both protocols, we minimize the total energy consumption at all edge devices over a particular finite training duration subject to a given training accuracy, by jointly optimizing the transmission power and rates at edge devices for uploading MLparameters and their central processing unit frequencies for local update. We propose efficient algorithms to optimally solve the formulated energy minimization problems by using the techniques from convex optimization. Numerical results show that as compared to other benchmark schemes, our proposed joint communication and computation design significantly improves the energy efficiency of the federated edge learning system, by properly balancing the energy tradeoff between communication and computation.
IoT devices have been adopted widely in the last decade which enabled collection of various data from different environments. The collected data is crucial in certain applications where IoT devices generate data for critical infrastructure or systems whose failure may result in catastrophic results. Specifically, for such critical applications, data storage poses challenges since the data may be compromised during the storage and the integrity might be violated without being noticed. In such cases, integrity and data provenance are required in order to be able to detect the source of any incident and prove it in legal cases if there is a dispute with the involved parties. To address these issues, blockchain provides excellent opportunities since it can protect the integrity of the data thanks to its distributed structure. However, it comes with certain costs as storing huge amount of data in a public blockchain will come with significant transaction fees. In this paper, we propose a highly cost effective and reliable digital forensics framework by exploiting multiple inexpensive blockchain networks as a temporary storage before the data is committed to Ethereum. To reduce Ethereum costs,we utilize Merkle trees which hierarchically stores hashes of the collected event data from IoT devices. We evaluated the approach on popular blockchains such as EOS, Stellar, and Ethereum by presenting a cost and security analysis. The results indicate that we can achieve significant cost savings without compromising the integrity of the data.
596 - Hao Xu , Lei Zhang , Yunqing Sun 2021
Radio Access Networks (RAN) tends to be more distributed in the 5G and beyond, in order to provide low latency and flexible on-demanding services. In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized RAN architecture to facilitate enhanced security and privacy on identification and authentication. It can offer user-centric identity management for User Equipment (UE) and RAN elements, and enable mutual authentication to all entities while enabling on-demand point-to-point communication with accountable billing service add-on on public network. Also, a potential operating model with thorough decentralization of RAN is envisioned. The paper also proposed a distributed privacy-preserving P2P communication approach, as one of the core use cases for future mobile networks, is presented as an essential complement to the existing core network-based security and privacy management. The results show that BE-RAN significantly improves communication and computation overheads compared to the existing communication authentication protocols.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا