Do you want to publish a course? Click here

FRBs: the Dispersion Measure of Host Galaxies

71   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the results of the IllustrisTNG simulation we estimate the dispersion measure which may be attributed to halos of so called host galaxies of fast radio bursts sources (FRBs). Our results show that in contradiction to assumptions used to show the applicability of FRBs to cosmological tests, both the dispersion measure and its standard deviation calculated for host galaxies with given stellar mass in general increase with the redshift. The effect is not strong and cosmological tests using FRBs will be possible, but to preserve the level of statistical uncertainty the number of FRBs with known redshift in a sample should be increased by 15%--35% depending on circumstances. We show various statistical characteristics of ionized gas surrounding galaxies, the resulting dispersion measure and their dependence on the host galaxy stellar mass, redshift, and the projected distance of a FRB source from its host center. Cosmology: theory -- Galaxies: halos -- large-scale structure of Universe



rate research

Read More

We investigate the dispersion measure(DM) and scattering of FRBs by the intergalactic-medium(IGM), foreground and host halos, using cosmological hydrodynamical simulation. We find that the median DM caused by foreground halos is around 30% of that caused by the IGM, but has a much larger variance. The DM induced by hosts deviates from a log-normal distribution, but exhibits an extended distribution in the range of $1-3000 {rm{pc, cm^{-3}}}$ with a median value $sim 100 {rm{pc, cm^{-3}}}$. Then we produce mock FRB sources, assuming a uniform distribution in the range $zsim 0-0.82$, to consider the propagation effect of IGM, foreground and host halos on FRB signals simultaneously. The DM distribution of mock sources agrees well with the observation. The fitted DM-redshift relation of the mock sources can provide a rough estimation of the redshifts of observed events with errors $delta z lesssim 0.15$. The distribution of mock sources in the DM-scattering time($tau$) space can also match the observation, assuming a Kolmogorov turbulence model with the inner and outer scale is 1000 km to 1 AU, and 0.2-10 pc respectively. Finally, we estimate the relative importance of these medium on DM and $tau$ in our models. The IGM and host halos are the primary and secondary sources to the extragalactic DM, $rm{DM_{exg}}$. Meanwhile, the contribution from foreground halos increases as $rm{DM_{exg}}$ increases. The host and foreground halos may be the most important medium for scattering. Statistically, the latter may dominate the scattering of events with $rm{DM_{exg}} gtrsim 200 {rm{pc, cm^{-3}}}$.
85 - R. Hill 2016
We use multi-band imagery data from the Sloan Digital Sky Survey (SDSS) to measure projected distances of 302 supernova type Ia (SNIa) from the centre of their host galaxies, normalized to the galaxys brightness scale length, with a Bayesian approach. We test the hypothesis that SNIas further away from the centre of their host galaxy are less subject to dust contamination (as the dust column density in their environment is smaller) and/or come from a more homogeneous environment. Using the Mann-Whitney U test, we find a statistically significant difference in the observed colour correction distribution between SNIas that are near and those that are far from the centre of their host. The local p-value is 3 x 10^{-3}, which is significant at the 5 per cent level after look-elsewhere effect correction. We estimate the residual scatter of the two subgroups to be 0.073 +/- 0.018 for the far SNIas, compared to 0.114 +/- 0.009 for the near SNIas -- an improvement of 30 per cent, albeit with a low statistical significance of 2sigma. This confirms the importance of host galaxy properties in correctly interpreting SNIa observations for cosmological inference.
389 - G. Q. Zhang , Hai Yu , J. H. He 2020
We calculate the dispersion measures (DMs) contributed by host galaxies of fast radio bursts (FRBs). Based on a few host galaxy observations, a large sample of galaxy with similar properties to observed ones has been selected from the IllustrisTNG simulation. They are used to compute the distributions of host galaxy DMs for repeating and non-repeating FRBs. For repeating FRBs, we infer the DM$ _{mathrm{host}} $ for FRBs like FRB 121102 and FRB 180916 by assuming that the burst sites are tracing the star formation rates in host galaxies. The median DM$_{mathrm{host}}$ are $35 (1+z)^{1.08}$ and $96(1+z)^{0.83}$ pc cm$^{-3}$ for FRBs like FRB 121102 and FRB 180916, respectively. In another case, the median of DM$_{mathrm{host}}$ is about $30 - 70$ pc cm$^{-3}$ for non-repeating FRBs in the redshift range $z=0.1-1.5$, assuming that the burst sites are the locations of binary neutron star mergers. In this case, the evolution of the median DM$_{mathrm{host}}$ can be calculated by $33(1+z)^{0.84}$ pc cm$^{-3}$. The distributions of DM$_{mathrm{host}}$ of repeating and non-repeating FRBs can be well fitted with the log-normal function. Our results can be used to infer redshifts of non-localized FRBs.
306 - I. Marini , S. Borgani , A. Saro 2021
Using the DIANOGA hydrodynamical zoom-in simulation set of galaxy clusters, we analyze the dynamics traced by stars belonging to the Brightest Cluster Galaxies (BCGs) and their surrounding diffuse component, forming the intracluster light (ICL), and compare it to the dynamics traced by dark matter and galaxies identified in the simulations. We compute scaling relations between the BCG and cluster velocity dispersions and their corresponding masses (i.e. $M_mathrm{BCG}^{star}$- $sigma_mathrm{BCG}^{star}$, $M_{200}$- $sigma_{200}$, $M_mathrm{BCG}^{star}$- $M_{200}$, $sigma_mathrm{BCG}^{star}$- $sigma_{200}$), we find in general a good agreement with observational results. Our simulations also predict $sigma_mathrm{BCG}^{star}$- $sigma_{200}$ relation to not change significantly up to redshift $z=1$, in line with a relatively slow accretion of the BCG stellar mass at late times. We analyze the main features of the velocity dispersion profiles, as traced by stars, dark matter, and galaxies. As a result, we discuss that observed stellar velocity dispersion profiles in the inner cluster regions are in excellent agreement with simulations. We also report that the slopes of the BCG velocity dispersion profile from simulations agree with what is measured in observations, confirming the existence of a robust correlation between the stellar velocity dispersion slope and the cluster velocity dispersion (thus, cluster mass) when the former is computed within $0.1 R_{500}$. Our results demonstrate that simulations can correctly describe the dynamics of BCGs and their surrounding stellar envelope, as determined by the past star-formation and assembly histories of the most massive galaxies of the Universe.
62 - Ye Li 2019
We search for host galaxy candidates of nearby fast radio bursts (FRBs), FRB 180729.J1316+55, FRB 171020, FRB 171213, FRB 180810.J1159+83, and FRB 180814.J0422+73 (the second repeating FRB). We compare the absolute magnitudes and the expected host dispersion measure $rm DM_{host}$ of these candidates with that of the first repeating FRB, FRB 121102, as well as those of long gamma ray bursts (LGRBs) and superluminous supernovae (SLSNe), the proposed progenitor systems of FRB 121102. We find that while the FRB 121102 host is consistent with those of LGRBs and SLSNe, the nearby FRB host candidates, at least for FRB 180729.J1316+55, FRB 171020, and FRB180814.J0422+73, either have a smaller $rm DM_{host}$ or are fainter than FRB121102 host, as well as the hosts of LGRBs and SLSNe. In order to avoid the uncertainty in estimating $rm DM_{host}$ due to the line-of-sight effect, we propose a galaxy-group-based method to estimate the electron density in the inter-galactic regions, and hence, $rm DM_{IGM}$. The result strengthens our conclusion. We conclude that the host galaxy of FRB 121102 is atypical, and LGRBs and SLSNe are likely not the progenitor systems of at least most nearby FRB sources. {The recently reported two FRB hosts differ from the host of FRB 121102 and also the host candidates suggested in this paper. This is consistent with the conclusion of our paper and suggests that the FRB hosts are very diverse. }
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا