No Arabic abstract
Combined experimental and modeling studies of the magnetocaloric effect, ultrasound, and magnetostriction were performed on single-crystal samples of the spin-dimer system Sr$_3$Cr$_2$O$_8$ in large magnetic fields, to probe the spin-correlated regime in the proximity of the field-induced XY-type antiferromagnetic order also referred to as a Bose-Einstein condensate of magnons. The magnetocaloric effect, measured under adiabatic conditions, reveals details of the field-temperature ($H,T$) phase diagram, a dome characterized by critical magnetic fields $H_{c1}$ = 30.4 T, $H_{c2}$ = 62 T, and a single maximum ordering temperature $T_{{rm max}}(45~$T$)simeq$8 K. The sample temperature was observed to drop significantly as the magnetic field is increased, even for initial temperatures above $T_{{rm max}}$, indicating a significant magnetic entropy associated to the field-induced closure of the spin gap. The ultrasound and magnetostriction experiments probe the coupling between the lattice degrees of freedom and the magnetism in Sr$_3$Cr$_2$O$_8$. Our experimental results are qualitatively reproduced by a minimalistic phenomenological model of the exchange-striction by which sound waves renormalize the effective exchange couplings.
We find a novel topological defect in a spin-nematic superfluid theoretically. A quantized vortex spontaneously breaks its axisymmetry, leading to an elliptic vortex in nematic-spin Bose-Einstein condensates with small positive quadratic Zeeman effect. The new vortex is considered the Joukowski transform of a conventional vortex. Its oblateness grows when the Zeeman length exceeds the spin healing length. This structure is sustained by balancing the hydrodynamic potential and the elasticity of a soliton connecting two spin spots, which are observable by in situ magnetization imaging. The theoretical analysis clearly defines the difference between half quantum vortices of the polar and antiferromagnetic phases in spin-1 condensates.
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy - a remarkable property given that spin fluctuations are normally suppressed (anti-bunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.
The weakly coupled quasi-one-dimensional spin ladder compound (CH$_3$)$_2$CHNH$_3$CuCl$_3$ is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and the associated Goldstone mode are detected and found to be similar to those in a reference 3D quantum magnet. However, for the upper two massive magnon branches the observed behavior is totally different, culminating in a drastic collapse of excitation bandwidth beyond the transition point.
Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations - Bell correlations - between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible non-classical correlations are experimentally accessible in many-body systems, and that they can be revealed by collective measurements.
Using parametric conversion induced by a Shapiro-type resonance, we produce and characterize a two-mode squeezed vacuum state in a sodium spin 1 Bose-Einstein condensate. Spin-changing collisions generate correlated pairs of atoms in the $m=pm 1$ Zeeman states out of a condensate with initially all atoms in $m=0$. A novel fluorescence imaging technique with sensitivity $Delta N sim 1.6$ atom enables us to demonstrate the role of quantum fluctuations in the initial dynamics and to characterize the full distribution of the final state. Assuming that all atoms share the same spatial wave function, we infer a squeezing parameter of 15.3,dB.