Keypoint Autoencoders: Learning Interest Points of Semantics


Abstract in English

Understanding point clouds is of great importance. Many previous methods focus on detecting salient keypoints to identity structures of point clouds. However, existing methods neglect the semantics of points selected, leading to poor performance on downstream tasks. In this paper, we propose Keypoint Autoencoder, an unsupervised learning method for detecting keypoints. We encourage selecting sparse semantic keypoints by enforcing the reconstruction from keypoints to the original point cloud. To make sparse keypoint selection differentiable, Soft Keypoint Proposal is adopted by calculating weighted averages among input points. A downstream task of classifying shape with sparse keypoints is conducted to demonstrate the distinctiveness of our selected keypoints. Semantic Accuracy and Semantic Richness are proposed and our method gives competitive or even better performance than state of the arts on these two metrics.

Download