No Arabic abstract
The Alternating Direction Method of Multipliers (ADMM) and its distributed version have been widely used in machine learning. In the iterations of ADMM, model updates using local private data and model exchanges among agents impose critical privacy concerns. Despite some pioneering works to relieve such concerns, differentially private ADMM still confronts many research challenges. For example, the guarantee of differential privacy (DP) relies on the premise that the optimality of each local problem can be perfectly attained in each ADMM iteration, which may never happen in practice. The model trained by DP ADMM may have low prediction accuracy. In this paper, we address these concerns by proposing a novel (Improved) Plausible differentially Private ADMM algorithm, called PP-ADMM and IPP-ADMM. In PP-ADMM, each agent approximately solves a perturbed optimization problem that is formulated from its local private data in an iteration, and then perturbs the approximate solution with Gaussian noise to provide the DP guarantee. To further improve the model accuracy and convergence, an improved version IPP-ADMM adopts sparse vector technique (SVT) to determine if an agent should update its neighbors with the current perturbed solution. The agent calculates the difference of the current solution from that in the last iteration, and if the difference is larger than a threshold, it passes the solution to neighbors; or otherwise the solution will be discarded. Moreover, we propose to track the total privacy loss under the zero-concentrated DP (zCDP) and provide a generalization performance analysis. Experiments on real-world datasets demonstrate that under the same privacy guarantee, the proposed algorithms are superior to the state of the art in terms of model accuracy and convergence rate.
In this paper, we study efficient differentially private alternating direction methods of multipliers (ADMM) via gradient perturbation for many machine learning problems. For smooth convex loss functions with (non)-smooth regularization, we propose the first differentially private ADMM (DP-ADMM) algorithm with performance guarantee of $(epsilon,delta)$-differential privacy ($(epsilon,delta)$-DP). From the viewpoint of theoretical analysis, we use the Gaussian mechanism and the conversion relationship between Renyi Differential Privacy (RDP) and DP to perform a comprehensive privacy analysis for our algorithm. Then we establish a new criterion to prove the convergence of the proposed algorithms including DP-ADMM. We also give the utility analysis of our DP-ADMM. Moreover, we propose an accelerated DP-ADMM (DP-AccADMM) with the Nesterovs acceleration technique. Finally, we conduct numerical experiments on many real-world datasets to show the privacy-utility tradeoff of the two proposed algorithms, and all the comparative analysis shows that DP-AccADMM converges faster and has a better utility than DP-ADMM, when the privacy budget $epsilon$ is larger than a threshold.
This paper introduces the first provably accurate algorithms for differentially private, top-down decision tree learning in the distributed setting (Balcan et al., 2012). We propose DP-TopDown, a general privacy preserving decision tree learning algorithm, and present two distributed implementations. Our first method NoisyCounts naturally extends the single machine algorithm by using the Laplace mechanism. Our second method LocalRNM significantly reduces communication and added noise by performing local optimization at each data holder. We provide the first utility guarantees for differentially private top-down decision tree learning in both the single machine and distributed settings. These guarantees show that the error of the privately-learned decision tree quickly goes to zero provided that the dataset is sufficiently large. Our extensive experiments on real datasets illustrate the trade-offs of privacy, accuracy and generalization when learning private decision trees in the distributed setting.
Differentially private (DP) machine learning allows us to train models on private data while limiting data leakage. DP formalizes this data leakage through a cryptographic game, where an adversary must predict if a model was trained on a dataset D, or a dataset D that differs in just one example.If observing the training algorithm does not meaningfully increase the adversarys odds of successfully guessing which dataset the model was trained on, then the algorithm is said to be differentially private. Hence, the purpose of privacy analysis is to upper bound the probability that any adversary could successfully guess which dataset the model was trained on.In our paper, we instantiate this hypothetical adversary in order to establish lower bounds on the probability that this distinguishing game can be won. We use this adversary to evaluate the importance of the adversary capabilities allowed in the privacy analysis of DP training algorithms.For DP-SGD, the most common method for training neural networks with differential privacy, our lower bounds are tight and match the theoretical upper bound. This implies that in order to prove better upper bounds, it will be necessary to make use of additional assumptions. Fortunately, we find that our attacks are significantly weaker when additional (realistic)restrictions are put in place on the adversarys capabilities.Thus, in the practical setting common to many real-world deployments, there is a gap between our lower bounds and the upper bounds provided by the analysis: differential privacy is conservative and adversaries may not be able to leak as much information as suggested by the theoretical bound.
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users raw data. To ensure users privacy, differentially private federated learning has been intensively studied. The existing works are mainly based on the textit{curator model} or textit{local model} of differential privacy. However, both of them have pros and cons. The curator model allows greater accuracy but requires a trusted analyzer. In the local model where users randomize local data before sending them to the analyzer, a trusted analyzer is not required but the accuracy is limited. In this work, by leveraging the textit{privacy amplification} effect in the recently proposed shuffle model of differential privacy, we achieve the best of two worlds, i.e., accuracy in the curator model and strong privacy without relying on any trusted party. We first propose an FL framework in the shuffle model and a simple protocol (SS-Simple) extended from existing work. We find that SS-Simple only provides an insufficient privacy amplification effect in FL since the dimension of the model parameter is quite large. To solve this challenge, we propose an enhanced protocol (SS-Double) to increase the privacy amplification effect by subsampling. Furthermore, for boosting the utility when the model size is greater than the user population, we propose an advanced protocol (SS-Topk) with gradient sparsification techniques. We also provide theoretical analysis and numerical evaluations of the privacy amplification of the proposed protocols. Experiments on real-world dataset validate that SS-Topk improves the testing accuracy by 60.7% than the local model based FL.
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps. We first establish an alignment between generalization and privacy preservation for any learning algorithm. We prove that $(varepsilon, delta)$-differential privacy implies an on-average generalization bound for multi-database learning algorithms which further leads to a high-probability bound for any learning algorithm. This high-probability bound also implies a PAC-learnable guarantee for differentially private learning algorithms. We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization. Three composition theorems are proposed to approximate the differential privacy of any iterative algorithm through the differential privacy of its every iteration. By integrating the above two steps, we eventually deliver generalization bounds for iterative learning algorithms, which suggest one can simultaneously enhance privacy preservation and generalization. Our results are strictly tighter than the existing works. Particularly, our generalization bounds do not rely on the model size which is prohibitively large in deep learning. This sheds light to understanding the generalizability of deep learning. These results apply to a wide spectrum of learning algorithms. In this paper, we apply them to stochastic gradient Langevin dynamics and agnostic federated learning as examples.